Looking @ Google Maps

Joey van der Bie
Media Technology programme
Leiden University
joey(@vanderbie.net

ABSTRACT

In a shot time Google Maps has become the facto standard
for online map services. We give an overview of how
Google Maps works and is used.

1. PURPOSE, CONTEXT AND HISTORY

Google Maps is web-based mapping service and
application. On the website http://maps.google.com users
can view maps of almost any place on earth on different
zoom levels. People can choose between maps and
satellite/aerial images or a combination of both. The service
also incorporates other information like business addresses
and public transport information. Besides this maps
application it is also possible to integrate maps on your
webpage and write applications for other purposes using the
extensive Google Maps Javascript API that is freely
available.

Google Maps (until 2005 Google Local) was originally
developed by the company Where2 which was acquired by
google in 2004 [1]. In 2005 Google Maps was converted
from plate Carrée to Mercator projection [1]. Traditionally
mapping applications on the web would render GIS
(Geographic information systems) information on an empty
map as the user requested that specific area of the map.
Google maps broke with that tradition and pre rendered all
maps and serves them as small tiles when needed. This
requires less processing in the server side and hence it can
deliver the content quicker. Google’s map technology has
been highly influential as most other mapping services in
the internet now uses a similar technique. The KML file
format for storing geospatial information developed by
Google has become a standard [3] and is used by others as
well.

The maps application and accompanying API is constantly
improved and enhanced. New features are added from time
to time, like the support for bicycle paths last month and
more and more features aimed at giving localized
information about shops and events. When maps was first
released users had to enter locations by there exact
geographical coordinates, but the API now supports
geocoding that allow street addresses to be translated to
coordinates[1][4].

Maarten van der Mark
Media Technology programme
Leiden University

mvdmark@gmail.com

Vincent Vijn
Media Technology programme
Leiden University
vincent@vijn.me

2. OPERATING PRINCIPLES

Although Google Maps is freely accessible, it is proprietary
software. There is an user license [5], which dictates the
terms of use, and the code and the architecture are kept a
secret. However the client-side is written in Java-Script and
can be analyzed, also Google explains the workings of the
client on their documentation page [7]. The server side still
is kept a secret but looking at other GIS [6] the architecture
can be guessed.

Most likely Google Maps architecture looks like this:

1. a component which has all the maps

2. a component which has all the geodata

3. a component which has all the tiles

4. a caching component which caches the data fed to the
client

5. a client which can be viewed in the browser

Note that components 1 till 4 can be combined and
separated over multiple servers. The caching component is
only for speed improvements and exists of caching
components for each other component so for our
explanations of the workings we will leave that out. This
leaves us with 4 components: maps, geodata, tiles and a
client.

The flow

1.When the client is started it requests tiles and geodata
from Google Maps

2. The tile component feeds the tiles to the client

3. The geodata component feeds the geodata to the client

4. When the user starts working with the client new
requests are done for new tiles and geodata

The client

The the client runs in the web browser of the user. It is
powered by the JavaScript that Google provides, and takes
care of displaying the map tiles and all extra information
(popup’s, routing instructions etc.). It also handles all user
interaction (dragging the map, zooming) and communicates
with the Google Maps API.

The geodata component

The geodata component contains Points of Interest (POI's
are literally points of interest and could be anything from a
house to a bus stop) which are created by users, bought and
collected by Google through searching websites.

mailto:joey@vanderbie.net
mailto:vincent@vijn.me
mailto:mvdmark@gmail.com

Next Google Maps has the ability to draw small vector
shapes. These shapes are also stored in this component. Last
street and area information is stored.

The maps and tile components

For the tile component to be able to send tiles it first has to
generate these from the maps component. The maps
component has all kind of map data stored as images,
vectors, streets and Points of Interest. Some data is bought
from cartographers like TeleAtlas or Navteq, other data is
created by Google. All the info is combined into one
image and cut in separate tiles. Since zooming on an
image isn't practical Google Maps uses zoom levels. The
amount of tiles in a level increases by 4. So level 1 is 4
tiles, level 2 is 16, level 3 is 64, etc.

For each zoom level an image needs to be generated and
cut in tiles. Generating of tiles (especially the detailed
zoom levels) take much time and processing power
therefore the tile component stores the tiles. Regeneration
of the tiles normally only happens when changes are made
to the map.

Level 1 Level 2 Level 3

(P o] 00 01 10 11 | 000 001 010 011 100 101 110 111
Ea@aca 12 Eloozcosmzms o el
L 20 21 | 30 :';1 '''' To20:.021 030 031 120 121 | 130 (434

22 23 3z 33 022 023" 032 ﬂ(‘i‘.:s“""'122_.k123 132 133

200 201 210 _ 211 3000 301 310 311
202 203 212 213 302 303 312 313
220 221 230 231 320 321 330 33

222 | 223 | 232 | 233 | 322 | 323 | 332 323

Figure 1: Map slices for different zoom levels
http://i.msdn.microsoft.com/dynimg/1C96238.jpg

Google Maps uses their own standard for structuring their
tiles [7],though they differ only by index from the other big
GIS [7][8][9]. Google Maps and most other GIS (like Bing
Maps and Open Street Maps) use the Mercator projection
for mapping their tiles [10]. Mercator projection treats the
earth as a sphere, while normally you would threat the earth
as an ellipsoid. This difference affects calculations done
based on treating the map as a flat plane. Projections in GIS
are referred to by their “EPSG” codes, identifiers managed
by the International Association of Oil & Gas Producers
(OGP) formerly known as the the European Petroleum
Survey Group [11]. Spherical Mercator is described in
EPSG:3785 [12] which replaces EPSG:900913. Taking that
the information the GIS supply don't differ that much from
eight other tiles from different GIS can be combined easily.

3. STRENGTHS AND WEAKNESSES

Google Maps is a free and flexible solution. Google’s
infrastructure of servers and their connections is solid and
fast so including a map doesn’t slow down the loading of
your webpage too much. Via the API you can configure a
whole range of options, including adding markers, area’s,
info windows or even your own map overlay. The newest
version of Google Maps is specially optimised to run on the
PC but also on mobile devices. There’s also a Flash version
available if you have a Flash based website. The interface
works fluently for the users.

There are off course also some downsides to using Google
Maps. The map is Google branded and the therms of service
require you to only use their maps in public web
applications. You can’t use the map images for other
purposes such as print documents or your own programs, or
use it for turn-by-turn navigation or controlling vehicles
automatically. You also can’t use the routing or geocoding
functions for uses other than displaying them on a map.

Google Maps is also a closed and proprietary platform. You
have to use the map data per Google’s therms, but you also
can’t adjust the maps or correct errors. Open projects such
as OpenStreetMaps don’t have such limitations. Open-
StreetMaps also allows you to send in corrections and since
it’s open data, you can use the maps in every way you like.
OpenStreetMaps only has a limited API (you can include a
map and fixed markers, but it’s not as extensive as Google
Maps), but other services built upon Open-StreetMaps do
provide more options, such as CloudMade.

Some other map services include Yahoo! Maps, MapQuest
and Bing Maps. A more extensive list of mapping services
is available at [13]. These services offer more or less the
same features in therms of functions and map quality, but
Bing and Google offer also high quality areal images
combining satellite images with photos taken with
airplanes, so you can also zoom in.

4. INTENDED APPLICATIONS

Intended applications include showing one or more
locations on a map or show a certain route. A lot of
applications combine a certain dataset and a map, to show
recent crime reports, police calls or Flickr photos that
contain GPS coordinates. There’s also Google City Tours,
that automatically suggests a route trough a city of choice
using their database of POI’s and their navigation system
[15].

One of the coolest and oldest application (dating back from
2006) used to be Treinvizier. It combined the train schedule
and up-to-date train delays to calculate the current position
of all trains in The Netherlands and showed them moving
on a map. Unfortunately, the author didn’t have time to

update the system to the new Google Maps API and the
new train planner, so the site isn’t online anymore.

5. UNINTENDED APPLICATIONS

Some more unexpected use is for example detecting
earthquakes. A US governmental service combined Twitter
messages about earthquakes that contain geo information or
a placename with Google Maps to show recent earthquake
reports [16].

There are also some artistic applications. Some people just
look for nice aerial photos [17], but others try to involve
into the maps themselves. Aram Bartholl made a real life
version of the default placemarker in Google Maps [18] and
Helmut Smits burned down some grass to eventually create
a death pixel in Google’s aerial photos [19].

The fact that Google supplies pretty high quality aerial
imaging for free also gives interesting opportunities, such
as finding craters [20] or missing airplanes [21].

6. GETTING STARTED

The google maps v3 API is very well documented on
googles website. The API reference and beginners tutorial
can be found here:

http://code.google.com/apis/maps/documentation/javascript

For the report we did a simple implementation of a Google
Maps application for an art festival. The festival called
“Kunst in Zicht” is situated on the Marken island near
Amsterdam and art installations can be seen on various
geographic locations on the isle.

The web application we made implements a Google map
that by default centers on the Marken Island. On the map
we placed several markers indicating certain installations
and events. The markers are indicated by the logo of the
festival. If you click on one of the makers a popup-balloon
gives you more information about the marker. Furthermore
we implemented a feature that lets your view move to
where you click on the map. A button on the top of the page
will reset the view and bring you back to Marken.

See attachment 1 for the How-to.

The complete source code can be viewed at
http://pastebin.com/V36HFhZU or in the attachment.

7. FINAL THOUGHTS

Google Maps is a powerful tool, and surely will be among
us for a while. Though Google Maps is easy to use on
multiple platforms, its license is limiting at best. Therefore
we hope the dominant position of tiled maps servers will be
overtaken by OpenStreetMaps, an Open Source platform
which has a very open license, is also accessible on almost
all platforms and is easy to edit.

REFERENCES

[1] Google Maps on Wikipedia, taken at 2010-06-03,
http://en.wikipedia.org/wiki/Google Maps

[2] Review of Google Maps
http://all-things-spatial.blogspot.com/2009/06/ingenuity-of-
google-map-architecture.html

[3] New layers for Google Maps,
http://googlegeodevelopers.blogspot.com/2010/05/kml-
traffic-and-bicycling-layers-come.html

[4] Geocoding on Wikipedia taken at 2010-06-03,
http://en.wikipedia.org/wiki/Geocoding

[5] Google Maps User Terms,
http://www.google.com/intl/en_en/help/terms maps.html
[6] http://opengeo.org/publications/opengeo-architecture/
[7] Google Maps API version 3documentation
http://code.google.com/intl/nl/apis/maps/documentation/jav
ascript/overlays.html#CustomMapTypes

[8] OSGEO Tile Map Service Specification,
http://wiki.osgeo.org/wiki/Tile Map Service Specification
[9]Bing Maps API specification,
http://msdn.microsoft.com/en-us/library/bb259689.aspx
[10]Spherical Mercator projection,
http://docs.openlayers.org/library/spherical mercator.html
[11] Internatial Association of Oil & Gas Producers,
http://www.epsg.org/

[12] EPGS 3857 standard, http://www.epsg-
registry. org/report htm“?

ode&sgyle name—OGP%ZODefault%20W1t
%20Code&title=EPS(G:3857

[13] http://www.programmableweb.com/apis/directory/1?
apicat=Mapping

[14] Tile information about different tile servers,
http://www.maptiler.org/google-maps-coordinates-tile-
bounds-projection/

[15] Google Maps City tours,
http://citytours.googlelabs.com/search

[16] Earthquake detector using Tiwtter and Google Maps

http://gislounge.com/usgs-twitter-earthquake-detector/

http://gislounge.com/usgs-twitter-earthquake-detector/
http://citytours.googlelabs.com/search
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://www.programmableweb.com/apis/directory/1?apicat=Mapping
http://www.programmableweb.com/apis/directory/1?apicat=Mapping
http://www.epsg-registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::3857&reportDetail=short&style=urn:uuid:report-style:default-with-code&style_name=OGP%20Default%20With%20Code&title=EPSG:3857
http://www.epsg-registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::3857&reportDetail=short&style=urn:uuid:report-style:default-with-code&style_name=OGP%20Default%20With%20Code&title=EPSG:3857
http://www.epsg-registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::3857&reportDetail=short&style=urn:uuid:report-style:default-with-code&style_name=OGP%20Default%20With%20Code&title=EPSG:3857
http://www.epsg.org/
http://docs.openlayers.org/library/spherical_mercator.html
http://msdn.microsoft.com/en-us/library/bb259689.aspx
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://code.google.com/intl/nl/apis/maps/documentation/javascript/overlays.html#CustomMapTypes
http://code.google.com/intl/nl/apis/maps/documentation/javascript/overlays.html#CustomMapTypes
http://opengeo.org/publications/opengeo-architecture/
http://www.google.com/intl/en_en/help/terms_maps.html
http://en.wikipedia.org/wiki/Geocoding
http://googlegeodevelopers.blogspot.com/2010/05/kml-traffic-and-bicycling-layers-come.html
http://googlegeodevelopers.blogspot.com/2010/05/kml-traffic-and-bicycling-layers-come.html
http://all-things-spatial.blogspot.com/2009/06/ingenuity-of-google-map-architecture.html
http://all-things-spatial.blogspot.com/2009/06/ingenuity-of-google-map-architecture.html
http://en.wikipedia.org/wiki/Google_Maps
http://code.google.com/apis/maps/documentation/javascript/
http://pastebin.com/V36HFhZU

[17] Art in the world from Google Maps, [20] Finding craters using Google Maps,

http://pongsocket.com/earthart http://www.gearthblog.com/blog/archives/2005/10/meteor_
[18] Placing a real POI in the world, craters.html

http://www.datenform.de/map.html [21] Finding Steve Fosset using Google Maps from

[19] Creating a dead pixel in Google Maps/Earth, Wikipedia, taken at 2010-06-03,
http://helmutsmits.nl/public-spaces/dead-pixel-in-google- http://en.wikipedia.org/wiki/Steve Fossett#Disappearance
earth and search

Attachment 1

How to implement:

In short this is what you need to do to create this application.

1.

First create a empty html document.

In the <head> section add the following line to include the maps javascript API.

—nn

<script type="text/javascript” src="http://maps.google.com/maps/api/js ?sensor=false"></script>

In the main body of your HTML page you should create a <div> to indicate the position of the map on your
webpage. The “id” attribute of your div should be set so we can refer to this <div> later.

Create a javascript function to initialise the map. You can call this in the onload() of your main body.
In this function you should initialise a new map object with the following line
new google.maps.Map(document.getElementByld("yourDivld"), myOptions);

Where myOptions should be an object containing some options like center coordinates, zoom factor and map type.
These can be found in the reference.

You should now have a working map. You can also use this initialize function to insert markers into the map.

An important part of working with maps are event listeners. You can listen for example for mouse clicks on many
object. For example for a mouse click on a marker to open an info-bubble (infowindow).

A listener for a mouse click on a map location will return the geographic coordinates. See example below on how
this can be used.

google.maps.event.addListener(map, 'click’, function(event){
map.panTo(event.latLng),

A

http://en.wikipedia.org/wiki/Steve_Fossett#Disappearance_and_search
http://en.wikipedia.org/wiki/Steve_Fossett#Disappearance_and_search
http://helmutsmits.nl/public-spaces/dead-pixel-in-google-earth
http://helmutsmits.nl/public-spaces/dead-pixel-in-google-earth
http://www.gearthblog.com/blog/archives/2005/10/meteor_craters.html
http://www.gearthblog.com/blog/archives/2005/10/meteor_craters.html
http://www.datenform.de/map.html
http://pongsocket.com/earthart

<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true"></script>
<script type="text/javascript">

var map;

function initialize() {

//start position
var latlng = new google.maps.LatlLng(52.456846,5.110703);

//options of the map

var myOptions = {

zoom: 14,

center: latlng,

mapTypeld: google.maps.MapTypeIld.SATELLITE

I

//init map
map = new google.maps.Map(document.getElementById("map_canvas"), myOptions);

//marker icons
var iconImage = new google.maps.MarkerImage("http://i50.tinypic.com/nf3ba.png");

//markers hardcoded positions

var markerl = new google.maps.Marker({position: new google.maps.LatlLng
(52.458088,5.100035) ,icon: iconImage, title: "Harbor performance", map: map});

var marker2 = new google.maps.Marker({position: new google.maps.LatLng(52.460028,5.10651),
icon: iconImage, title: "Church performance", map: map});

var marker3 = new google.maps.Marker({position: new google.maps.LatLng(52.45748,5.102055),
icon: iconImage, title: "Hof van Marken", map: map});

addBubble(markerl, "In the harbor of marken there"+"
"+"will be an hourly performance.™");

addBubble(marker2, "Various artist will present their"+"
"+" work in and around the
village church.™);

addBubble(marker3, "The tiny streets of the hof van marken"+"
"+" are an excelent location
to spot"+"
"+" artists and installations.");

//click to pan to mouse position
google.maps.event.addListener(map, 'click', function(event) {
map .panTo(event.latlLng);

s
3

function addBubble(marker, text){

//infowindow (bubble)
var infowindow = new google.maps.InfoWindow({
content: text
i9N
//click to open popup bubble for a marker
google.maps.event.addListener(marker, 'click', function() {
infowindow.open(map,marker);
s
}
</script>
</head>
<body onload="initialize()">
<!-- //buttons -->
<button onClick="initialize()">Go to Marken</button>
<div id="map_canvas" style="width:100%; height:100%"></div>
</body>
</html>

