
Building timeline-based web experiences:
Mozilla Popcorn.js

Alice Schut
Media Technology

MSc student
Leiden University
aliceschut@live.nl

Bernd Dudzik
Media Technology

MSc student
Leiden University

bernd_dudzik@hotmail.com

Andrés Pardo Rodríguez
Media Technology

MSc student
Leiden University

apardor@gmail.com

ABSTRACT
This report will give an overview of the context
surrounding the development of popcorn.js, by focusing
on the transformation in usage of time-based media in
the web over the past decade. Furthermore, an in-depth
description of the technology behind popcorn.js' working
is given, together with an account of its strengths and
weaknesses, and examples of intended and unintended
applications.

1. PURPOSE, CONTEXT AND HISTORY

1.1. Purpose
Traditionally time based-media such as audio and video
were not natively supported by web browsers, but
needed third-party software to be rendered properly.
These plugins thus enhanced the inherent abilities of the
browser by enabling it to handle unknown content types.
However, the fact that each one of them was entirely in
control of the embedded media content led them to being
black boxes on a web page: The media content inside
was only accessible by the plugin itself. This prevents
the establishment of connections with anything beyond
the plugin-scope and puts the content outside the reach
of other parts of the web through using technologies like
JavaScript or CSS.

Popcorn.js is a JavaScript library developed by the
Mozilla Foundation that combines several open source
technologies to bridge this gap and allow for interactions
between time-based media content and the remainder of
the web. By using it, videos and audio-files can trigger
changes in other web content: Reaching a certain point
in a timeline can cause the layout of its embedding
website to change, or content to be fetched from a
related Twitter stream or a Wikipedia article.
1.2. Context
Sharing and linking information has been the World
Wide Web’s primary purpose since its beginning. In it's
early days text was the main type of available
information in the web, while rich media content was
very scarce. Additionally, the flow of content production
was unidirectional: Users were retrieving and reading
text documents, but the technology was still not used as
a collaboration tool. Web inventor Tim Berners-Lee

described practice of its usage at the end of the 1990s as
rather a “publication medium but less of a collaboration
medium” [2].

However, with the advent of the Web 2.0, the way
information was shared had been drastically changed.
New technologies and design strategies for the web
enhanced the collaboration possibilities within the
medium and enriched the user’s experience by allowing
better manipulation of content and nourished an
environment for user participation [19]. Technological
advances in connection speed and computation
performance, enabled people to actively participate in
media production and led to the rise of online video-
platforms – YouTube being the most popular one. Video-
Sharing services have spread over the web at such a fast
rate that it has lead to an explosion of online video
content [6] . For this reason videos will be soon the main
web content [6].

The popcorn.js library can be seen as a result of these
developments. It allows users of the Web and software
developers to harness different types of time-based
media in a dynamic fashion and to create tools that
enable further usage by others – potentially to create
their own tools and products. These products will not be
static, but dynamic, as the Web 2.0 itself.

Another important backdrop against which the relevance
of popcorn.js has to be seen lies in existing technologies
for handling time-based media on the web. The
functionality that it offers is not something that has not
been previously possible to developers using proprietary
technologies and substantial programming knowledge:
E.g. Adobe's Flash environment provided an interface to
JavaScript with the introduction of its ActionScript 3.0,
thus allowing for communication between content inside
the plugin-scope and outside of it [5].

The crucial difference is that it makes this functionality
accessible to everybody free of charge: Popcorn.js was
published as open software under the MIT License and
is based entirely on open standards and technologie,
such as HTML5 and JavaScript.
1.3. History

mailto:aliceschut@live.nl
mailto:aliceschut@live.nl
mailto:bernd_dudzik@hotmail.com
mailto:bernd_dudzik@hotmail.com
mailto:apardor@gmail.com
mailto:apardor@gmail.com

Some representative video ́s milestones in the web are
listed bellow:

• 1990: Tim Berners-Lee developed the first web server
and launched the world wide web.

• June 24th, 1993: First live streaming concert by
Severe Tire Damage [17]

• 1995: RealNetworks broadcasted a baseball game
(Yankees V.S. Seattle Mariners).

• 1996: Microsoft ActiveMode media player was
released.

• 1997: Realplayer streaming application was released.

• 1999: Apple quicktime 4 was released.

• 2002: Adobe Flash became the main streaming
technology.

• 2005: first youtube video [9].
1.4. VIDOS: A Predecessor of Video’s Manipulation
Through the Web.
In the late 90’s and early 2000’s video in the web was
starting to spread. Online systems like VIDOS provided
tools to edit videos in the web. VIDOS was a java-based
server-client system that enabled users to cut, edit and
download videos online. The main purpose of this
application was to provide a free editing service, instead
of forcing users to buy expensive editing software. The
developers of this online tool were convinced, at that
time, that this was the right path to follow because the
network’s bandwidth was improving exponentially, so
videos could be handled and manipulated efficiently
over the web. This, at the end, enabled the video format
to become popular in web communication, so the
developers of VIDOS pursued to create a tool that
allowed users to get the most out of it: “as part of the
trend from desktop-based to network-based solutions,

the VIDOS system enables an individual Internet user
anywhere in the world,(...) to undertake sophisticated
spatial and temporal video editing” [3]. Nevertheless,
this type of online editing application did not really
work, as desktop-based editing software became cheaper
and available within the computers’ operating systems
(as with iMovie and Movie Maker).

The difference between VIDOS and Popcorn.js is that
the first is a web-based video editor, while the latter is a
video-based web editor [16]. Furthermore, VIDOS was a
tool only for editing, it didn’t explore the features that
videos had in the web, while popcorn.js focuses in the
interaction between time-based media content and the
remainder of the web (as it was explained before).
VIDOS was one of the first approaches for developing a
tool that helped to manipulate and handle videos in the
web, but it was focused solely for editing purposes. With
popcorn.js editing is not the goal; enriching the video’s
content with external information is.

2. OPERATING PRINCIPLES

The following section will provide an overview over the
key technologies involved in the working of popcorn.js.
Additionally, an in-depth view of the structure of the API
and plugin-architecture is given, together with a detailed
description of each components function.

2.1. Key technologies
As described above, popcorn.js main purpose is
providing connectivity between time-based media
content and and other web content. At its core,
Popcorn.js draws heavily on introductions to HTML that
have been introduced in the fifth version of the standard
for the markup language.This version makes it more
easy to handle and include multimedia and graphic
content to the webpage. Through <video> and <audio>
tags media-related features can be accessed, that are
supported by the underlying APIs that are an integral
part of HTML5.

As mentioned above, before these new features were
introduced, developers had to call upon third party
plugins that were capable of rendering audio and video
content. The introduction of these features can be
considered a big leap forward to a standardization for the
handling of time-based media content across browsers
and devices. Through the extension of the DOM
(Document Object Model) in HTML5 by the HTML
Media Element (and its children HTML Video Element
and HTML Audio Element) specific media related
properties have become accessible and controllable.
Popcorn.js can be understood as wrapper around these
media-related additions to the HTML standard and
without them, would not have been possible: It turns Figure 1. VIDOS view.

media into interactive JavaScript objects, that can trigger
and listen for events.

Popcorn.js is not the only project attempting build a
library around the HTML Media Element or trying to
provide its functionality to older browsers by building
transitional bridges. Examples include the video.js
project [18] and the audio.js project [1]. However,
popcorn includes a plugin-architecture to provide the
same interface used to wrap the functionality of the
HTML Media Element, also for other kind of players
(e.g. YouTube, read more information below). This
creates possibilities for seamless connectivity,
independent of the precise media type actually in use.

2.2. API Structure: Core and Plugin-Architecture

Popcorn.js can be structured in two broad parts: A core
and a collection of add-ons. The core deals with with
wrapping the functionality of the HtmlMediaElement's
methods, properties and events into a consistent API.
The add-on part of the library consists of various plugins
and methods that allow the establishment of connections
to other web services or to media formats. In the
following a detailed description of the various parts of
the API and their functionality will be given, together
with some examples of their usage.

2.2.1. Core
• Media Methods: These provide control over the media

element as well as access to the current status of the
media object in question, such as query and control
the volume of the current popcorn instance. Especially
important are mechanisms for playback control and a
method for binding event handling callbacks to events
(see below).

• Media Properties: Grants access and manipulation
possibilities to a small set of properties of an active
popcorn instance. It includes the frame rate as well as
as a reference to an instance of the currently loaded
medium. It is important to not that properties in this

context does not refer to the actual media properties
(access for these is handled in via the Media
Methods), but merely properties of the popcorn.js
instance in question.

• Events: Can be triggered from anywhere inside the
code at any time and all listener functions associated
with it will be executed. Encompasses the standard
HTML5 media events [14], although not all of them
may be implemented for all of the different player
versions (e.g. YouTube). The event system makes it
easy in Popcorn.js to trigger actions at specific
instances during media playback, e.g. to perform an
action whenever the video is paused, one would
simply have to add a listener for the pause event and
then provide a callback function that performs the
desired action.

• Utility Methods: Provide non-essential helper
functions created for easing the process of working
with the library itself. Examples include a specific for-
each iterator and an function to merge-objects with
each other – Cases that may be neglectable for the
majority of users, but might proof beneficial when
dealing with specific situations.

• Effects: This part of the core functionality allows for
CSS classes to be dynamically assigned to elements
and brought about through functions that are executed
prior to track events, thus allowing to signal changes
to the end-user.

2.2.2. Add-ons
• Players: One of popcorn's most noteworthy features is

its ability to deal with ample type of media players
outside of the native HTML5 one, while being able to
use the same syntax and function calls for each of
them. This abstraction allows developer to use media
hosted on platforms like YouTube or Vimeo, without
having to possess extensive knowledge of each of the
web media platform's API. A well documented plugin
API allows for users to contribute to the existing set of
players.

• Base player: Emulates the HTMLVideoElement to use
popcorn without an video or audio element, thus
providing a simple timeline functionality for projects.
Furthermore, it acts as a base-class from which all
other custom players inherit their properties.

• Web media: Custom players for media hosted on the
web. At the time of writing these include Youtube,
Vimeo and Sound cloud.

• Smart player: Allows for the usage of any existing
player without having to specify which player, e.g. to

Figure 2: Popcorn.js API structure based on official
reference [13]

create a chain of HTML5 video together with
YouTube or Vimeo clips

• Plugins: In order to allow for interaction between a
popcorn program and content from supported web
services, it possesses a plugin-architecture for users to
develop additional functionality. The content can then
easily accessed and displayed depending on events,
e.g. to show a specific Google Map at a certain point
in the media timeline. A list of all currently available
plugins can be found in the official popcorn
documentation [15].

• Parsers: A specific set of parsers allow popcorn
projects to react on stored data. The parsing produces
a timeline of events to potentially trigger actions in the
script. Supported formats include specific subtitle
formats like SBV or SSA, but also general data
formats like JSON and XML.

• Modules: This category is interesting, because it
highlights the dual goal of popcorn's endeavor to both
provide a library that mades HTML5 media more
easily accessible and to enhance the connectivity of
time-based media with the web. While the former is
addressed in the core functionalities of the library, the
add-ons enhance the latter. Modules, on the other hand
are neither of both, because they provide additional
core functionalities. These encompass the possibility
to create a seamless chain of different media to be
played back, and even add a popcorn specific HTML
attribute to mark data for popcorn's parsers.

3. STRENGTHS AND WEAKNESSES

Popcorns strict usage of open-standards and technology
leads to it being easily accessible for a broad community
of users: No expensive software has to be bought, or
money to be invested in learning material. Because of its
community driven development, new features are added
in fast development cycles and errors can be directly
reported and addressed on an open developer platform
[12]. Popcorn's plugin architecture also leverages the
power of the community for usage and development: It
makes it easy for lay-programmers to connect their
projects to important web services or even develop an
own plugin that provides such a functionality.

One strong side of popcorns support of HTML media is
the possibility of improved performance, due to not
having to run a second application (a plugin) while
playing.

However, since popcorn.js draws so heavily on HTML5
and its native media-handling, and it also inherits some
its problems. Not all web browsers currently in use

support the HTML5 <video> and <audio> elements
fully – especially Microsoft's Internet Explorer 8.0 turns
out to be problematic and does not handle these tags
properly [4]. Additionally, the situation is complicated
due to the differences in video container format and
codec support that different browsers provide for
HTML media: While there is no limitation in principle
on either, there is no single combination that is fully
supported by all major browsers. This lead to the
establishment of the good practice of having to store
video-files in multiple formats to ensure cross-browser
support (usually in the triplet of MP4, Ogg and WebM,
also see the introduction in 6. below for an example).

Another problematic aspect lies in popcorns struggle to
make using different kind of media as simple as possible
by creating a unified API layer. However, there are still
properties of individual third-party APIs that cannot be
bridged. Certain function calls and media events cannot
be transferred as of the point of writing. As an example:
Some properties of the YouTube player cannot be
handled by function calls from popcorn.js, but have to be
passed directly when accessing the media in a query
string of the URL. This makes working seamlessly with
different media types harder.

Furthermore, parts of the API documentation is still in
development. This results in sometmes confusing terms
or references to (as of now) undocumented features,
thereby making it harder for novices to learn how to
properly work with popcorn.

4. INTENDED APPLICATIONS

4.1. Web-based editing tools
The best known application made with Popcorn.js is
Mozilla’s own Popcorn Maker application: An online
authoring and editing tool, allowing users to easily
enhance, remix and share web videos, without the
requirement to possess any sort of programming skills. It
is part of the Mozilla Foundations Webmaker project
[10] – an initiative with the aim to empower people to
producing content themselves.

Figure 3: PopcornMaker

4.2. Non-linear narratives
The interactive documentary One Millionth Tower by
Katerina Cizek [11] demonstrates the usage of
popcorn.js to create non-linear narratives . In concert
with other web technologies, such as WebGL, popcorn is
responsible for the timing of camera motions and
animations in this documentation about a highrise in the
vicinity of Toronto. Additionally, it enhances the project
with live data from social media platform or web
services like Google Maps. It allows for changes in both
direction to happen: Points in the video timeline are able
to influence content of the surrounding website, while at
the same time user interaction and data impact the
content of the documentary.

4.3. Hyperaudio
Additionally to video, popcorn.js also has been used to
enhance the connectivity of audio to the rest of the web.
Developer Mark Boas created several projects that deal
with the connection of transcribed speech to other web-
based media or to trigger annotations based on timeline-
events.An good example provides an interactive
transcript of an US presidential debate in 2012 between
then candidates Romney and Obama for the web
presence of Al-Jazeera, in which usage of keywords such
as “Jobs” are counted and displayed per candidate [8].
Additionally, popcorn is used to link an interactive

transcript directly to the according part of the source
media. Broes describes the potential impact of these new
possibilities as ”Hyperaudio is to audio as Hypertext is
to text” [21].

5. UNINTENDED APPLICATIONS

Discussing unintended applications for Popcorn.js can
be tricky, as apparently there is no unintended
application for it. Rather, is it possible to argue that
Popcorn.js allows different possibilities for managing
video content, by adding layers of information from the
web’s content. Nevertheless, it is for this reason that is
important to discuss if Popcorn.js really gives a
breakthrough for video handling in the web (which will
be discussed within the FINAL THOUGHTS of this
paper).

6. GETTING STARTED

The following section is a brief guide into how to build a
simple popcorn programm, dynamically displaying a
footnote at a certain moment in the timeline of a
YouTube video. Since popcorn draws on commonly
spread webtechnologies, there are hardly any special
prerequisites have to be fulfilled for this project.
However, as mentioned above, the library draws heavily
on HTML5 media, thus the browser used todisplay the
product should support HTML5 (or have the Adobe
Flash Player plugin installed as a fall back solution).
Some basic knowledge of HTML and JavaScript are
assumed in the description and setting up of the
example.

The first step to use the popcorn.js library in a web
project is to create a minimal HTML5 document and to
include the library in it. This can either be done through
downloading it or through referencing it direcly on the
official website. The code below will do the latter (This
URL always refers tothe latest stable production version
of the library) :

<html>

 <head>

 <script src="http://popcornjs.org/code/dist/popcorn-
complete.js"></script>

 </head>

 <body>

 </body>

</html>

The next step is to extend the markup in the body of the
document by two <div>-element with the IDs
videoContainer and footnoteContainer (additions are
marked orange below):

Figure 4: One Millionth Tower

Figure 5: Hyperaudio

http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js

<html>

 <head>

 <script src="http://popcornjs.org/code/dist/popcorn-
complete.js"></script>

 </head>

<body>

	

 <div id="videoContainer"></div>

	

 <div id="footnoteContainer"></div>

 </body>

</html>

Now it is time to use the popcorn library itself by adding
some JavaScript to the document (additions are marked
orange below). The code added below will wait till the
DOM is ready, and then create an instance of Popcorn.
In the constructor two arguments are passed: The
container in which the video shold be added in the
document (in our case the <div>-element
videoContainer) and the URL of the video hosted on
YouTube. The URL below is purely fictional and you
will have to replace it with a real one for the example to
actually work. Finally, the function pop.footnote() adds a
footnote to the popcorn instance, together with some
informations on when in the timeline it should appear
and disappear, what is to be displayed and in which
element. For the example this would give us a footnote
appearing at second 2, disappearing at second 15 and
displaying “Hello World!” in the element labeled
footnoteContainer.

<html>

<head>

 <script src="http://popcornjs.org/code/dist/popcorn-
complete.js"></script>

<script>

 document.addEventListener(“DOMContentLoaded”,
fucntion(){

 var pop = Popcorn.youtube("#videoContainer",
"http://www.youtube.com/watch?v=videoID");

 pop.footnote({

 start:2,

 end: 15,

 text:“Hello World!”,

 target: “footnoteContainer”

 });

 pop.play();

 },false);

 </head>

 <body>

	

 <div id="videoContainer"></div>

	

 <div id="footnoteContainer"></div>

 </body>

</html>

7. FINAL THOUGHTS

7.1. Hypermedia Aesthetics
After taking a broad look into Popcorn.js a question
raises: Does it really takes out videos from being black
boxes in web pages? Several critics and remarks against
how Popcorn.js displays and retrieves the added layers
of information explain that it drives the attention away
from the content of the video, as additional content pops
in its sides [20]. The way video is managed is not really
a breakthrough. Yes, it allows to add content and connect
different sources of information with the moving image,
but video is still just played in a window. Gabriel
Shalom explains in his Hypercubist Manifesto that video
is digital, but that there is still an analog approach
towards it based on frame, flat and linear assumptions
[7]. The real potential of the video in the web is still
unexplored according to these ideas.

The first approaches towards video with the Popcorn.js
reminds the way video and text information are
connected within a news broadcast. Usually the
anchorman tells the story while a small picture that
refers to the news is displayed; then, while the video of
the news is running, additional information is added via
text notes. Both type of sources are presented at the
same time, but they still act independent of each other
(the additional text-based information is outside the
video’s frame). Marshall McLuhan once said that “each
new medium looks to its predecessors for its
content” [7], so it is possible to suggest that the linking
of video and other layers of information in the web is
still seen as if they belong to television. This is why
Gabriel Shalom argues that video games take moving
images one step further than film, as they can go back
and return through the frames, and as they don’t follow a
linear time line [7].

One approach that tries to exploit the digital qualities of
videos in the web is “The Flight of the Navigator”,
developed by the Mozilla Audio Team. This seeks to
bring the web’s information into the video’s frame,
rather than present it within a box as it has been done

http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://popcornjs.org/code/dist/popcorn-complete.js
http://www.youtube.com/watch?v=videoID
http://www.youtube.com/watch?v=videoID

before [20]. Its goal is to integrate the web and the video
by exploring new approaches for linking content,
breaking the linear sequence of videos and thinking
about video through novel ideas of space and time.
Popcorn.js is a very important tool that started breaking
the black box that locked video inside the web. It gave
the chance to start combining different layers of
information, but the new challenge is to merge these
layers.

REFERENCES
1. Audio.js . http://kolber.github.io/audiojs/

2. Berners-Lee, T. Weaving the Web. Orion Business
Books, London, Great Britain, 1999. p.62

3. Boudier, T., Shotton, D. M. VIDOS, A System for
Video Editing and Format Conversion Over the
Internet. Computer Networks 34 (2000). p. 931-944.

4. Building HTML5 Applications. Practical Cross-
Browser HTML5 Audio and Video. http://
msdn.microsoft.com/en-us/magazine/hh781023.aspx

5. External Interface - AS3. http://help.adobe.com/
en_US/FlashPlatform/reference/actionscript/3/flash/
external/ExternalInterface.html

6. Grassi, M., Morbidoni, C., Nucci, M. A Collaborative
Video Annotation Systema Based on Semantic Web
Technologies. Springer Science+Business Media,
LLC (2012).

7. Hypercubism Manifesto. http://vimeo.com/14604303

8. Interactive Video Transcript of Denver Debate. http://
w w w. a l j a z e e r a . c o m / i n d e p t h / i n t e r a c t i v e /
2012/10/20121049528478583.html?s=15705)

9. Me at the Zoo. First Youtube Video Ever Posted.
http://www.youtube.com/watch?v=jNQXAC9IVRw\

10. M o z i l l a P o p c o r n M a k e r. h t t p s : / /
popcorn.webmaker.org

11. One Millionth Tower. http://highrise.nfb.ca/
onemillionthtower/

12.Popcorn.js Developer Platform. https://
webmademovies.lighthouseapp.com/projects/63272-
popcornjs/overview

13. Popcorn.js Documentation. http://popcornjs.org/
popcorn-docs/index.html)

14. Popcorn.js Events Documentation. http://
popcornjs.org/popcorn-docs/events

15. Popcorn.js Plugins. http://popcornjs.org/popcorn-
docs/plugins/

16. Richter, B. Moskowitz, B. Mozilla Popcorn: Web
Video Interaction Using Client-Side Javascript. ACM
SIGMM Records. Vol. 4, No. 1 (March 2012).

17. Severe Tire Damage House Band of the Internet.
http://www.std.org/text/filler.html

18. Video.js HTML 5 Video Player. http://
www.videojs.com

19. Web 2.0 Compact Definition: Trying Again. Tim
O’Reilly. http://radar.oreilly.com/2006/12/web-20-
compact-definition-tryi.html

20. Web Made Movies. An Aesthetic for Web Made
Movies . h t tp : / /v ideos .mozi l l a .o rg / se rv /
webmademovies/justintime.ogv

21. What is Hyperaudio? http://blog.appsfuel.com/
2012/08/30/what-is-hyperaudio

Figure 6: Flight of the Navigator view

http://kolber.github.io/audiojs/
http://kolber.github.io/audiojs/
http://msdn.microsoft.com/en-us/magazine/hh781023.aspx
http://msdn.microsoft.com/en-us/magazine/hh781023.aspx
http://msdn.microsoft.com/en-us/magazine/hh781023.aspx
http://msdn.microsoft.com/en-us/magazine/hh781023.aspx
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://vimeo.com/14604303
http://vimeo.com/14604303
http://www.aljazeera.com/indepth/interactive/2012/10/20121049528478583.html?s=15705
http://www.aljazeera.com/indepth/interactive/2012/10/20121049528478583.html?s=15705
http://www.aljazeera.com/indepth/interactive/2012/10/20121049528478583.html?s=15705
http://www.aljazeera.com/indepth/interactive/2012/10/20121049528478583.html?s=15705
http://www.aljazeera.com/indepth/interactive/2012/10/20121049528478583.html?s=15705
http://www.aljazeera.com/indepth/interactive/2012/10/20121049528478583.html?s=15705
http://www.youtube.com/watch?v=jNQXAC9IVRw
http://www.youtube.com/watch?v=jNQXAC9IVRw
https://popcorn.webmaker.org
https://popcorn.webmaker.org
https://popcorn.webmaker.org
https://popcorn.webmaker.org
http://highrise.nfb.ca/onemillionthtower/
http://highrise.nfb.ca/onemillionthtower/
http://highrise.nfb.ca/onemillionthtower/
http://highrise.nfb.ca/onemillionthtower/
https://webmademovies.lighthouseapp.com/projects/63272-popcornjs/overview
https://webmademovies.lighthouseapp.com/projects/63272-popcornjs/overview
https://webmademovies.lighthouseapp.com/projects/63272-popcornjs/overview
https://webmademovies.lighthouseapp.com/projects/63272-popcornjs/overview
https://webmademovies.lighthouseapp.com/projects/63272-popcornjs/overview
https://webmademovies.lighthouseapp.com/projects/63272-popcornjs/overview
http://popcornjs.org/popcorn-docs/index.html
http://popcornjs.org/popcorn-docs/index.html
http://popcornjs.org/popcorn-docs/index.html
http://popcornjs.org/popcorn-docs/index.html
http://popcornjs.org/popcorn-docs/events
http://popcornjs.org/popcorn-docs/events
http://popcornjs.org/popcorn-docs/events
http://popcornjs.org/popcorn-docs/events
http://popcornjs.org/popcorn-docs/plugins/
http://popcornjs.org/popcorn-docs/plugins/
http://popcornjs.org/popcorn-docs/plugins/
http://popcornjs.org/popcorn-docs/plugins/
http://www.std.org/text/filler.html
http://www.std.org/text/filler.html
http://www.videojs.com
http://www.videojs.com
http://www.videojs.com
http://www.videojs.com
http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html
http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html
http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html
http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html
http://videos.mozilla.org/serv/webmademovies/justintime.ogv
http://videos.mozilla.org/serv/webmademovies/justintime.ogv
http://videos.mozilla.org/serv/webmademovies/justintime.ogv
http://videos.mozilla.org/serv/webmademovies/justintime.ogv
http://blog.appsfuel.com/2012/08/30/what-is-hyperaudio
http://blog.appsfuel.com/2012/08/30/what-is-hyperaudio
http://blog.appsfuel.com/2012/08/30/what-is-hyperaudio
http://blog.appsfuel.com/2012/08/30/what-is-hyperaudio

