
ABSTRACT

Spotify is a popular online music streaming service with

over 20 million songs. This paper discusses the Spotify

technology and the possibilities to integrate this technology

into applications. Topics such as the metadata API, Apps

and the Spotify URI scheme are covered. Furthermore, the

strengths and weaknesses of the Spotify technology are

discussed, as well as intended and surprising applications.
Finally, a 'getting started' guide is provided, with a basic

explanation of using the metadata API in an application.

1. PURPOSE, CONTEXT AND HISTORY

Spotify is an online music streaming service which was

created in Stockholm, Sweden, and launched in 2008. With

a database of more than 20 million songs, with more than

20,000 songs added per day, Spotify is one of the biggest

music streaming services around, available in 56 countries

[15]. Creating a Spotify account allows users to create

playlists and subsequently share these playlists with other

users and collaboratively edit them. The sharing of these

playlists is supported by many websites, which link to the

playlist in Spotify. Users with an account can also integrate
it with their Facebook and twitter accounts which allows

them to share tracks and playlists or access those of their

friends.

 2006: Spotify is developed in Stockholm, Sweden,

by founders Daniel Ek and Martin Lorentzon. It

announces licensing deals with a number of major

music labels [26].

 2008 (October): Spotify is launched [34].

 2010 (September): Spotify has 10 million users, of

which a quarter are paying users [13].

 2011 (August): Spotify announces an Software

Development Kit (SDK) with which iOS
developers can access its database to build apps

[28].

 2011 (November): Spotify launches its first

number of apps [24].

 2012 (February): Spotify throws a party, “Music

Hack Weekends”, to attract app developers.

 2013 (March): Spotify has 24 million users, of

which 6 million were paying users [30].

 2014 (May): Spotify has 40 million users, of

which 10 million were paying users [27].

2. OPERATING PRINCIPLES

The Spotify service is primarily a streaming music service.

As mentioned above, users can listen to over 20 million

tracks on multiple devices. However, an internet connection

is required to do so because Spotify is a streaming service.

This means that the user does not own the music files but

plays them directly from a Spotify server. In this process

every music file is chopped into little pieces, these pieces

are sent to the user in a continuous flow (stream) of data

and played in the right order at the end user. This is a

positive thing from the perspective of the Spotify user since
they do not need to have a local copy of every song they

might want to play. The benefit for Spotify itself is that they

stay in control over the content, for example serving higher

quality

Figure 1. Workflow of the Spotify Metadata API.

Web Technology: Spotify

Sam Verkoelen

Media Technology

Leiden University

sdverkoelen@gmail.com

Donna Piët

Media Technology

Leiden University

donnapiet@gmail.com

Jules Verdijk

Media Technology

Leiden University

jules.ver@gmail.com

files to premium users. Nevertheless, streaming does also

have a downside. The internet connection and available

bandwidth determine whether the service can be used. Also,

for every time that a user plays a song Spotify will have to

request the files from the server. Therefore more data will

be transferred over the internet in comparison to a regular
download.

A solution to minimize the amount of traffic from the server

is caching. When the user plays a song and the chopped

stream of files flows from the server to a device, a local

copy is made and saved for 30 days [14]. This cached copy

will then be accessed the next time the user plays that same

song, instead it being downloaded again. Notwithstanding,

for premium users it is possible to keep the cache for 3.333

tracks per device [18].

Inside the Spotify application there is also the possibility to

run Apps. Apps are small applications mostly created by

third party developers that run inside the Spotify
application. For app developers there is the possibility to

make use of the Spotify database and user specific

information [25]. An example app that uses this information

is the „Songkick App‟ [23]. Songkick looks at recently

listened artists and notifies the user when this artist gives a

concert nearby. Nonetheless, Spotify has announced that it

will soon discard its apps and will come with an alternative

in the future [4].

For developers it is possible to incorporate a direct Uniform

Resource Identifier (URI) link to the Spotify application.

This is possible because Spotify is a registered protocol
within an URI scheme [3, 33]. This enables direct links

from, for example, a website to the Spotify application such

as:

track

When a user clicks this link the browser will know that it

has to open Spotify and start playing that specific track.

Furthermore, developers are also able to request data from

Spotify through their Metadata Application Programming

Interface (API) [19]. This API is a web service that makes it

possible to request specific metadata about artists, albums

or tracks in a structured way. The API currently has two

main functions called search and lookup, where the latter is

the function that actually serves the developer the metadata.
This metadata includes information like the duration of a

track or the date on which an album was released. The

search function provides the developer with a way of

translating a human-readable string (i.e. the name of a

band) into a Spotify specific identifier (ID) which then can

be used to lookup the metadata. The data, by default, is

served in the widely supported Extensible Markup

Language (XML) format. However, it is also possible to

receive the data in JavaScript Object Notation (JSON)

formatting.

3. STRENGTHS AND WEAKNESSES

For the regular user there are several alternatives to Spotify

that offer comparable music streaming services. These

services differ mostly in their availability in certain regions,
the size of the music library, alternative music browsing

(like apps, channels and podcasts), cost and social media

integration [21]. Some of the best known alternatives that

offer services similar to Spotify are: Deezer, Rdio,

BeatsMusic and Google Music.

For developers focusing on integrating Spotify in a new

(web-)environment or application, alternatives can differ

greatly from Spotify. Listed are some of the strengths and

weaknesses of using Spotify and its API, which are then

compared to some of the aforementioned alternatives.

3.1. Strengths

 A low volatility music database, which enables the

caching of requested metadata. Spotify offers the

option to see whether cached data has changed, so
data will not have to be requested again [19].

 A linking system using Spotify-specific URIs,

enabling direct linking to in-app tracks, albums,

Table 1. Functionalities and limitations of the metadata API’s of Spotify and alternative music streaming services.

Service Format Search Data Authorization Method

Spotify [19] XML, JSON
Artist, Album,

Track
Limited None GET

Rdio [10] XML, JSON

Album, Artist,
Label, Playlist,

Track, User

Full
Developer

Account

GET, POST,

DELETE

Deezer [6]
XML, JSON,

JSONP

Artist, Album,

Track
Limited None

GET, POST,

DELETE

BeatsMusic [1] JSON

Artist, Track,
Album, Playlist,

User, Genre

Only name and ID User ID
GET, POST,

DELETE

artists, playlists and users [17].

 Customizable widgets to embed tracks or playlists
in HyperText Markup Language (HTML) web

pages, which will play in a Spotify client [31].

 The metadata API is accessible without

authorization.

 The metadata API provides additional information,

like track length, availability, explicit content and

popularity.

3.2. Weaknesses

 All core functionalities (such as music playback

and making playlists) can only be used within a

Spotify application and cannot be implemented in

other applications.

 The metadata API only provides data; storing or

saving data is not possible.

 The metadata API is restricted to searching for

albums, artists and tracks [22].

 The metadata API has a request rate limit of ten
requests per Internet Protocol (IP) Address per

second [19].

3.3. Alternatives

In terms of music streaming services that resemble Spotify

there are some differences in the services offered to

possible developers. For an overview of their metadata

API‟s see Table 1.

In requesting metadata, Spotify is relatively restricted in

regard to its alternatives. Rdio and BeatsMusic offer more

search options and Rdio opens up almost all its data to

developers. Noticeable are some other possibilities these

services offer. All three offer the possibility to edit and store

data through an API, ranging from basic playlist editing and

ratings (all three) to accessing and editing almost all

personal user data (Rdio, BeatsMusic).

Looking past metadata and into using the core

functionalities of streaming, Deezer, Rdio and BeatsMusic

offer embedded out-of-app music streaming to logged in

users.

 Deezer offers a JavaScript SDK, which

incorporates the metadata and offers custom User

Interface (UI) design [7].

 BeatsMusic offers a JavaScript SDK [9].

 Rdio offers a flash player with a ActionScript 3 or

a JavaScript interface [8].

 Spotify does offer an embedded javascript web

player, but this player activates streaming within

the Spotify app, the embedded player can be used

to pause, play and skip. This player uses Spotify

URIs to control the streaming [31].

Integrating Spotify in new environments and applications is

limited to accessing basic metadata and linking to in-app

functionalities. Alternatives also give access to metadata,

but are not restricted to in-app functionalities, and offer the

possibility to actually integrate music streaming within new

environments. Nonetheless, all services require a user to be
registered and logged in with their own account. When

choosing which service to use in developing, it is

recommended to take into account its population of

registered users in your region.

4. TYPICAL APPLICATIONS

4.1. Searching in Spotify

Developers have created alternative ways of browsing

Spotify data using their metadata API. One example of this

is the site „Spotify Music Catalog‟ , where you can check

whether a certain artist is available on Spotify [29]. These

applications generally search for a song, artist or album in

the metadata and either return a formatted table of the

results or simply state whether the searched object is

available on Spotify. Another example is the Spotify Search

add-on for the Mozilla Firefox browser [32]. Once installed,

this „Spotify-search‟ add-on allows a user to highlight any
text (for example the name of a band or song in an article),

right-click, and press „Search in Spotify‟. The add-on takes

the highlighted text and converts it to a Spotify URI to link

to Spotify and automatically search.

4.2. Linking to Spotify

Another common implementation of Spotify is the direct

linking to in-app artists, albums, tracks or playlists. For

example, the site „NME‟ uses a Spotify-widget to link

directly to in-app playlists that are related to recent articles

[20]. Festivals also often post a Spotify URI link to a

playlist with their attending bands on their website as

promotion. These URI linkings can also be found in social

media posts, for example, on twitter streams of artists and

labels.

5. SURPRISING APPLICATIONS

Spotify only offers developers a limited amount of access to

their data. Therefore the possibilities of what developers
can do with this data in their own applications is also quite

limited and most often results in apps using their own

databases and subsequently linking back to Spotify for

playback. Despite the limited amount of options, a number

of developers have still found creative ways of using the

metadata API and Spotify URI.

5.1. Creating Playlists

„Spartify‟ allows multiple users on different devices to

create a playlist together, for example, at a party. Creating

playlists together is a service that is already included within

Spotify, nonetheless this requires every user to be logged in

to Spotify. Spartify creates a playlist on its own server and

lets users add songs to the communal playlist through their
website [2]. Each user can add a track, and Spartify will

search for the track in Spotify and play that track, keeping

track of the play length of each track, and then directly link

to the next track. Thus the whole playlist functionality is

done on the server of Spartify and Spotify is used solely to

play each track through an URI link [2].

5.2. Adding Music to Your Spotify

Rather than adding your albums to Spotify by searching for

them one by one, „Covify‟ created and application that lets

you add your albums by holding them in front of your

webcam. Using its own database of album covers, Covify
then searches and plays your album in Spotify [5].

5.3. Discovering New Music

One feature which is not available on Spotify is the ability

to play a random song. An example of a site which offers

this possibility is http://www.karnhuset.net [16]. Another

surprising way of discovering new music is the application

„Forgotify‟. Forgotify filters the Spotify data by popularity,

which is based on amount of plays, and then plays a song

which is the least popular [12].

6. GETTING STARTED

To begin working with the Spotify technology it is useful to

be able to test Spotify URIs. To do so, download the Spotify

application and log in [11]. Further requirements for this

chapter are a web server (we use Apache), PHP Hypertext

Preprocessor (PHP) with a minimum version of 5.3,

simpleXML module for PHP and the possibility for your
firewall to make outgoing connections. A basic knowledge

of HTML is required for this example.

6.1. Linking: Understanding the Spotify URI

There are three types of links described in the Spotify URI

specification document. The first one (lookup) is used when

the Spotify ID for the artist, album or track that will be

requested is known.

//Format

spotify:<artist|album|track>:<id>

//Example

spotify:track:6PZDPg3dZgJkNL6nVMUB4b

The second case (search) is when a Spotify ID is unknown,

but there is a human-readable string such as artist, album or

track available.

//Format

spotify:search:<text>

//Example

spotify:search:beatles

The last case is a method to open a specific user‟s playlist.

A playlist ID is required in this case. It is noteworthy that
searching for an ID is not possible. However, users can

copy this URI directly from the Spotify application.

//Format

spotify:user:<username>:playlist:<id>

//Example

spotify:user:sdverkoelen:playlist:1fSKe4IOL0m1ONXZ

yYihzq

How to link to one of these URIs depends on your

programming or markup language. In the case of HTML it

is as simple as:

<a

href=”spotify:user:sdverkoelen:playlist:1fSKe4IOL0

m1ONXZyYihzq”>Webtech playlist

6.2. Metadata API: Search for a Link

The following example will show a PHP page with a search

form that searches in the Spotify database. The first step is

to create an empty HTML page with the title “Spotify

search”, and save this file as search.php.

<html>

 <head>

 <title>Spotify search</title>

 </head>

 <body>

 </body>

</html>

The next step is to create a form and place it inside the body

tags. Since this form will point to itself we place the

filename search.php in the action parameter. In this example

a GET is used as the method because it passes the search

term in the URL, making it possible to share or bookmark
the page. The entered search term is passed under the name

„q‟, this name has been chosen in order to be consistent

with the API, which also uses „q‟ as the search term.

 <body>

 <form action="search.php" method="get">

 <input type="text" name="q" value="" />

 <input type="submit" name="" value="search"

/>

 </form>

 </body>

In order to make the search process a bit more user friendly

it is possible to place any previous search terms inside the

textfield, if there are any.

<input type="text" name="q" value="<?php

if(isset($_GET['q'])) echo($_GET['q']) ?>" />

The actual code that accesses the API can be placed below

our form inside the <?php ?> tags. However, before a

request is sent to the API, there needs to be a check to make
sure that GET-variable „q‟ even exists and that it holds a

value.

//Only search when there is an input

if(isset($_GET['q']) && $_GET["q"] != „'){

}

Inside this „if statement‟, the URL of the API can be

constructed together with the GET-variable „q‟.

//The API search URL

$url = 'http://ws.spotify.com/search/1/album?q='.

$_GET['q'];

This URL can be loaded directly into simpleXML, an

optional module of PHP capable of handling XML files.

The result (an object of the complete XML file) will be

stored in the variable $xml.

//load the API XML file

$xml = simplexml_load_file($url);

The Spotify API will return every single search result inside

<track> tags and the simpleXML will convert it into an

object. Therefore a loop through all the tracks can be

created using the $xml->track variable.

//Looping through all the tracks

foreach($xml->track as $track){

}

Because this example will show the links in a structured

way, a table should be placed around the <?php ?> tags. For

neatness, a heading is added in this table showing which

column contains the track, album or artist data.

<table width="100%">

 <tr>

 <td width="40%">Track</td>

 <td width="40%">Album</td>

 <td width="20%">Artist</td>

 </tr>

<?php

 //Only search when there is an input

 if(isset($_GET['q']) && $_GET["q"] != ''){

 //The API search URL

$url =

'http://ws.spotify.com/search/1/album?q='.

$_GET['q'];

 //load the API XML file

 $xml = simplexml_load_file($url);

 //Looping through all the tracks

 foreach($xml->track as $track){

 }

 }

?>

</table>

Inside this loop the $track variable represents the object of

a single search result. Different variables such as the track

name and a link to the album can be accessed in this way:

$track->name //track name

$track->album->attributes()->href //link to album

With the use of basic HTML and the $track object it is

now possible to construct links to the track, artist and

album.

//Show and link to track

echo('<td>attributes()-

>href.'">'.$track->name.'</td>');

//Show and link to album

echo('<td>album->attributes()-

>href.'">'.$track->album->name.'</td>');

//Show and link to artist

echo('<td>artist->attributes()-

>href.'">'.$track->artist->name.'</td>');

When these links are placed inside the foreach loop, the
finished example should look like this:

<html>

 <head>

 <title>Spotify search</title>

 </head>

 <body>

 <form action="search.php" method="get">

 <input type="text" name="q" value="<?php

if(isset($_GET['q'])) echo($_GET['q']) ?>" />

 <input type="submit" name="" value="search" />

 </form>

 <table width="100%">

 <tr>

 <td width="40%">Track</td>

 <td width="40%">Album</td>

 <td width="20%">Artist</td>

 </tr>

 <?php

 //Only search when there is an input

 if(isset($_GET['q']) && $_GET["q"] != ''){

 //The API search URL

 $url =

'http://ws.spotify.com/search/1/album?q='.

$_GET['q'];

 //load the API XML file

 $xml = simplexml_load_file($url);

 //Looping through all the tracks

 foreach($xml->track as $track){

 echo('<tr>');

 //Show and link to track

 echo('<td>attributes()-

>href.'">'.$track->name.'</td>');

 //Show and link to album

 echo('<td>album-

>attributes()->href.'">'.$track->album-

>name.'</td>');

 //Show and link to artist

 echo(' <td>artist-

>attributes()->href.'">'.$track->artist-

>name.'</td>');

 echo('</tr>');

 }

 }

 ?>

 </table>

 </body>

</html>

The final web page can be seen in figure 2.

6.3. Metadata API: Search for a Link

In the following example a PHP page will be built with an

artist ID form that searches in the Spotify database.

The first step is to create an empty HTML page with the

title “Spotify lookup” and save this file as search.php.

<html>

 <head>

 <title>Spotify lookup</title>

 </head>

 <body>

 </body>

</html>

The next step is to create a form and place it inside the body

tags. Since this form will point to itself, we place the

filename lookup.php in the action parameter. In this

example a GET is used as the method because it passes the

search term in the URL, making is possible to share or

bookmark the page. The entered search term is passed

under the name „id‟, this name has been chosen in order to
be consistent with the API, which also uses „id‟ as the

search term.

<body>

 <form action="lookup.php" method="get">

 <input type="text" name="id" value="" />

 <input type="submit" name="" value="search" />

 </form>

</body>

In order to make the search process a bit more user friendly,

it is possible to place any previous search terms inside the

textfield, if there are any.

<input type="text" name="id" value="<?php

if(isset($_GET['id'])) echo($_GET['id']) ?>" />

The actual code that accesses the API can be placed below

our form inside the <?php ?> tags. However, before a

request is sent to the API there needs to be a check to make

sure that the GET-variable „id‟ even exists, and that it holds

a value.

//Only search when there is an input

if(isset($_GET['id']) && $_GET["id"] != „'){

}

Inside this if statement the URL of the API can be

constructed together with the GET-variable „id‟.

//The API lookup URL

$url =

'http://ws.spotify.com/lookup/1/?uri=spotify:artis

t:'.$_GET['id'].'&extras=albumdetail';

This URL can be loaded directly into simpleXML, an
optional module of PHP capable of handling XML files.

The result (an object of the complete XML file) will be

stored in the variable $xml.

//load the API XML file

$xml = simplexml_load_file($url);

Figure 2. Screenshot of the search page

The Spotify API will return every single search result inside

<albums><album /></albums> tags, and the simpleXML

will convert it into an object. Therefore, a loop through all

the albums can be created using the $xml->albums->album

variable.

//Looping through all the tracks

foreach($xml->albums->album as $album){

}

Because this example will show the links in a structured

way, a table should be placed around the <?php ?> tags.

For neatness, a heading is added in this table showing

which column contains the album, release or availability

data.

<table width="100%">

 <tr>

 <td width="30%">Album</td>

 <td width="5%">Released</td>

 <td width="65%">Availability</td>

 </tr>

<?php

 //Only search when there is an input

 if(isset($_GET['id']) && $_GET["id"] != ''){

 //The API search URL

$url =

'http://ws.spotify.com/lookup/1/?uri=spoti

fy:artist:'.$_GET['id'].'&extras=albumdeta

il';

 //load the API XML file

 $xml = simplexml_load_file($url);

 //Looping through all the tracks

 foreach($xml->albums->album as $album){

 }

 }

?>

</table>

Inside this loop the $track variable represents the object of

a single search result. Different variables such as the track

name and a link to the album can be accessed in this way.

$track->name //track name

$track->album->attributes()->href //link to album

With the use of basic HTML and the $album object it is
now possible to construct links to the track, artist and

album.

//Show and link to track

echo('<td>attributes()-

>href.'">'.$track->name.'</td>');

//Show and link to album

echo('<td>album->attributes()-

>href.'">'.$track->album->name.'</td>');

//Show and link to artist

echo('<td>artist->attributes()-

>href.'">'.$track->artist->name.'</td>');

When these links are placed inside the foreach loop, the

finished example should look like this.

<html>

 <head>

 <title>Spotify lookup</title>

 </head>

 <body>

 <form action="lookup.php" method="get">

 <input type="text" name="id" value="<?php

if(isset($_GET['id'])) echo($_GET['id']) ?>"

/>

 <input type="submit" name="" value="get the

data" />

 </form>

 <table width="100%">

 <tr>

 <td width="30%">Album</td>

 <td width="5%">Released</td>

 <td width="65%">Availability</td>

 </tr>

 <?php

 //Only search when there is an input

if(isset($_GET['id']) && $_GET["id"] !=

''){

//The API lookup URL

$url =

'http://ws.spotify.com/lookup/1/?uri=spo

tify:artist:'.$_GET['id'].'&extras=album

detail';

//load the API XML file

 $xml = simplexml_load_file($url);

 //Looping through all the tracks

 foreach($xml->albums->album as $album){

 echo('<tr>');

//Show and link to album

echo(' <td><a href="'.$album-

>attributes()->href.'">'.$album-

>name.'</td>');

//Show release year

 echo('<td>'.$album->released.'</td>');

//Show availability

echo(' <td>'.$album->availability-

>territories.'</td>');

echo('</tr>');

 }

 }

 ?>

 </table>

 </body>

</html>

The final web page can be seen in figure 3.

7. FINAL THOUGHTS

With more than twenty million tracks, and new ones being

added daily, Spotify offers users a comprehensive music

streaming service through a range of apps on desktop,

mobile and the web. By means of a directly accessible

metadata API, Spotify offers developers several methods to

gather and use metadata about all the tracks, artists and
albums in their music library. Actual music streaming is

limited to the apps, and requires users to run such an app.

To access this functionality as a developer, Spotify offers a

Spotify-specific URI which can be used to activate certain

in-app functionalities through direct linking. Spotify also

offers widgets, which allow embedding players and

playlists in websites, however, the widgets only work by

directly linking to functionalities within a Spotify app.

Several other music streaming services offer more

possibilities in incorporating music playback in new

environments, but, like Spotify, these all require a user to be

logged in to the service. Conclusively, as a web technology,

Spotify opens up no core functionalities to developers,
nonetheless it does offer metadata of their music library and

easy linking to in-app functionalities.

REFERENCES

1. BeatsMusic - Getting Started.

https://developer.beatsmusic.com/docs/read/Home.

2. Blixt, A., and R.V. Santos. Spartify.

http://www.spartify.com/.

3. Bradner, S. The Internet Standards Process --

Revision 3. Harvard University, October 1996.

http://tools.ietf.org/html/rfc2026#section-2.2.

4. Closure of Spotify Apps Submission. Spotify.com.

https://developer.spotify.com/news-

stories/2014/03/24/closure-of-spotify-apps-submissions/.

5. Covify: Scanning your albums into Spotify.
http://beta.covify.com/.

6. Deezer For Developers. Deezer.com.

http://developers.deezer.com/login?redirect=/api.

7. Deezer for Developers: Javascript SDK.

Deezer.com.

http://developers.deezer.com/sdk/javascript.

8. Developers/Documentation. Rdio.com.

http://www.rdio.com/developers/docs/web-playback/index/.

9. Developers: Getting Started. Beatsmusic.com.

https://developer.beatsmusic.com/docs/read/web_playback_

api/Getting_Started.
10. Documentation - Rdio Developers. Rdio.com.

http://www.rdio.com/developers/docs/web-

service/overview/.

11. Download Spotify. Spotify.com.

https://www.spotify.com/us/download/.

12. Forgotify: Discover a previously unheard Spotify

track. http://forgotify.com/.

13. Geere, D., Spotify hits 10 million users and 10

million tracks. Wired.co.uk (September, 2010).

http://www.wired.co.uk/news/archive/2010-09/15/spotify-

milestones/.

14. How long can I cache offline content? Spotify.com.
https://support.spotify.com/us/learn-

more/faq/#!/article/How-long-can-I-cache-offline-content.

15. Information - Spotify Press. Spotify.com.

http://press.spotify.com/nl/information/.

16. Kahn, T., Spotify Random Song Generator.

http://www.karnhuset.net/demos/spotify/randomSong/.

17. Linking to Spotify. Spotify Blog. Spotify.com

(January, 2008).

https://news.spotify.com/nl/2008/01/14/linking-to-spotify/.

18. Listen Offline. Spotify.com.

https://support.spotify.com/us/learn-
more/guides/#!/article/Listen-offline. Figure 3. Screenshot of the lookup page

19. Metadata API - Developer. Spotify.com.

https://developer.spotify.com/technologies/web-api/.

20. NME on Spotify. http://www.nme.com/spotify.

21. Peckham, Matt. 13 Music Streaming Services

Compared by Price, Quality, Catalog, Size and More. Time

Magazine. March 19, 2014. Print.
http://time.com/30081/13-streaming-music-services-

compared-by-price-quality-catalog-size-and-more/.

22. Search - Developer. Spotify.com.

https://developer.spotify.com/technologies/web-api/search/.

23. Songkick Concerts.

http://open.spotify.com/app/songkickconcerts.

24. Spotify: A Perfect Platform for Apps. Spotify.com

(November, 2011).

http://press.spotify.com/us/2011/11/30/spotify-a-perfect-

platform-for-apps/.

25. Spotify Apps API Reference Guides. Spotify.com.

https://developer.spotify.com/technologies/apps/reference.
26. Spotify Background Information. Spotify.com.

https://d2us6zencw9qvn.cloudfront.net/wp/u/spotify-

background-information.pdf.

27. Spotify hits 10 million global subscribers.

Spotify.com (May, 2014).

http://press.spotify.com/us/2014/05/21/spotify-hits-10-

million-global-subscribers/.

28. Spotify inside your iOS app. Spotify.com (August,

2011). https://developer.spotify.com/news-

stories/2011/08/31/spotify-inside-your-ios-app/.

29. Spotify Music Catalog - Search Song Library.
http://www.linein.org/examples/spotify/.

30. Spotify‟s Progress So Far. Spotify.com.

http://www.spotifyartists.com/spotify-explained/#spotifys-

progress-so-far.

31. Spotify Widgets - Developer. Spotify.com.

https://developer.spotify.com/technologies/widgets/.

32. Svensson, G., Spotify Search Add-on.

https://addons.mozilla.org/en-US/firefox/addon/spotify-

search/.

33. Uniform Resource Identifier (URI) Scheme Name:

Spotify (2012). https://www.iana.org/assignments/uri-

schemes/prov/spotify.
34. We‟ve only just begun!. Spotify Blog. Spotify.com

(October, 2008).

http://news.spotify.com/uk/2008/10/07/weve-only-just-

begun/.

