ThingSpeak — an APl and Web Service
for the Internet of Things

Marcello A. GOmez Maureira
LIACS, Leiden University
ma.gomezmaureira@gmail.com

ABSTRACT

In this report we describe the use of ThingSpeak, an
“Application Programming Interface” (API) and web
service for the “Internet of Things” (IoT). While the
interpretation as to what should be understood under the
term is changing over time, here we refer to enabling
objects or simple devices to be identified and
communicated with via the Internet. The ThingSpeak API is
an open source interface which listens to incoming data,
timestamps it, and outputs it for both human users (through
visual graphs) and machines (through easily parse-able
code). We look into practical examples using the Arduino
micro-controller as well as communication with graphical
interface operating systems through a Python script. Our
report concludes that ThingSpeak is especially useful for
smaller hardware projects where connectivity over the
Internet is required but in which the maintenance of a
dedicated communication server is not practical.
Alternative IoT services exist but tend to require payment
for some of their functionality and are consequently not
open source.

PURPOSE, CONTEXT AND HISTORY

The term “Internet of Things” (IoT), coined by Kevin
Ashton in 1999 [2], has been in use for several years and
continues to be of interest, specifically when it comes to
technological progress. But what exactly is the IoT?
Essentially, it refers to giving objects representation in the
digital realm through giving them a unique ID and
connecting them in a network [2]. In other words, these
things are connected to the internet and are able to
automatically transfer data without relying on human
interaction [30] - hence being “Machine to Machine”
(M2M) interaction. Essentially, M2M interaction enables
networked devices to exchange data and perform actions
without the input or assistance of humans, for instance in
remote monitoring [31]. Indeed, the lack of necessity for
human intervention seems to conjure dystopian images of
the future. But this is not necessarily the case.

For instance, one can envision the IoT to become an
important feature of the ‘home of the future’, where one can
begin pre-heating the oven just before they get home from
work via a (mobile) application. Or perhaps, automatically
turning on the washing machine when the power grid has
less load, as communicated by a remote power plant. Or,
businesses can anticipate when a popular item is running
low on stock due to notification from the shelves that they
sit on. Hence, the IoT has many interesting applications that
can be applied to both individuals and corporations.

Daan Oldenhof
LIACS, Leiden University
daanoldenhof(@gmail.com

Livia Teernstra
LIACS, Leiden University
helloliefje@gmail.com

According to Dr. Lara Sristava, advisor to the European
Commission, the IoT is predicted to become pervasive and
as ubiquitous as the Internet today [26]. Increasingly
embedded processing power in objects will lead to
increased embedded intelligence in objects, consequently
giving rise to the popular term of referring to such objects
as “smart” [19]. Objects will create their own content and
merge with society. So this content will merge with user
content, creating a semantic world informed by key
patterns. These patterns will help us better leverage our
increasingly large amount of available data. So in the
absolute most general sense, the IoT can be thought of as
creating intelligent devices that are interconnected with
people and other devices. The type of device that is
connected is only limited by the imagination of its creator.

History

The concept of the IoT, although uncoined at the time, has
been in discussion since the early 1990s [20]. The notion
was popularized by using it for market analysis at MIT’s
Auto-ID center. Originally, the network was based on items
tagged with “Radio Frequency ID” (RFID) chips, a
technology which has already existed for half a decade. The
first applications were to use RFID chips in inventory
management, from the facilitation of routing to loss
prevention.

Over time, technologies developed and other methods of
networking objects emerged such as using bar-codes,
“Quick Response” (QR) codes, digital watermarking and
”Near Field Communication” (NFC) [26]. As costs lowered
for the technologies to make objects “smart”, an increased
amount of applications for networking objects came to be.
These applications included connecting objects for
surveillance and security. It was also applied in other
industrial uses such as transport, food safety and document
management [7]. As a relatively ‘new’ web technology, the
timeline for the IoT looks quite sparse:

* 1991: Concept realized
e 1999: Term “Internet of Things” coined

* 2002: Popularization by MIT and use in businesses

* 2005-2010: Applications in surveillance, security,
healthcare, transport, food safety and document
management

* 2011: ThingSpeak AP committed to GitHub

e 2020: 50 billion devices predicted to be connected to
the IoT [7]

The European Commission has big plans for the use of the
IoT by 2020, as noted in its digital agenda. It is predicted
that in just 6 years time, there will be over 50 billion
devices connected to the IoT [7]. Overall, the IoT is still in
its infancy and there are many promises for its application
in the future, with seemingly endless possibilities.

OPERATING PRINCIPLES

In order to connect an object to the IoT, several things are
needed in the hardware and software realm. First of all, if
one wishes to go beyond simply connecting data from a
computer, objects to gather (sensors) or receive (actuators)
data are necessary. For example, a digital thermometer can
be used to measure temperature. In this case, the data needs
to be uploaded to a network of connected servers which run
applications [16]. Such a network is commonly referred to
as ‘the cloud’. The cloud utilizes the process of
visualization, meaning that several physical servers can be
connected and used in tandem, but appear to the user as one
machine (despite that at the physical level, the machines
function independently) [9]. This method of computing thus
allows changes to be made to the ‘virtual’ server (such as
software updates or changes in storage space) much easier
than before.

In this case, an object will connect to the cloud through a
(possibly wireless) Internet connection to upload or receive
data. Objects to be connected are typically augmented with
either sensors or actuators. A sensor is something that tells
us about our environment. Think of a temperature sensor, or
even the GPS receiver on your mobile phone. Actuators are
something that you want to control. Things like thermostats,
lights, pumps, and outlets. The I[oT brings everything
together and allows us to interact with our things and, even
more interestingly, allows things to interact with other
things.

For the purpose of connecting an object to the IoT, we
focus on the ThingSpeak API. The interface provides
simple communication capabilities to objects within the loT
environment, as well as interesting additional applications
(such as ThingTweet, which will be further discussed in a
later section). Moreover, ThingSpeak allows you to build
applications around data collected by sensors. It offers near
real-time data collection, data processing, and also simple
visualizations for its users. Data is stored in so-called
channels, which provides the user with a list of features
[32]. Each channel allows you to store up to 8 fields of data,
using up to 255 alphanumeric characters each. There are
also 4 dedicated fields for positional data, consisting of:
Description, Latitude, Longitude, and Elevation. All
incoming data is time and date stamped and receives a
sequential ID. Once a channel has been created, data can be
published by accessing the ThingSpeak API with a ‘write
key’, a randomly created unique alphanumeric string used
for authentication. Consequently, a ‘read key’ is used to
access channel data in case it is set to keep its data private
(the default setting). Channels can also be made public in
which case no read key is required.

According to the ThingSpeak website, the API works as
noted in Figure 1. Essentially, ‘things’ are objects that are

given sensors to collect data. Data is sent and received via
simple “Hypertext Transfer Protocol” (HTTP) POSTs,
much like going to a web page and filling out a form. This
communication happens through plaintext, JSON or XML.
The data is then uploaded to the cloud and from there can
be used for a variety of purposes. In turn, data (such as
commands or choosing certain options) can be gathered and
communicated to the cloud, which in turn sends these
messages to the object.

cThmgSpeak welo services

things ¢ = ox . —apps

oﬂ\er things

Figure 1. ThinkSpeak representing itself as 'cloud’
interface

A deeper level of what occurs, especially on the server side,
can be seen in Figure 2 [15]. When a device sends data
through a HTTP request (communication), it is processed
by the IoT service (in this case ThingSpeak), which
communicates with a virtual server. Both the server and the
IoT service communicate directly with the application.
Finally, at all levels of communication from the device to
the application there is both requirements regarding security
and management of the data transfer. Unfortunately,
ThingSpeak does not document how the specific parts of the
diagram are handled on a technical level. Given enough
time and expertise, it should however be possible to answer
this by looking into the (open source) code base.

Application

5 loT Business Process

s Management

0
€ &
@ 2 q o 2
£ 5 Virtual Entity £
& ® 3
g 2 3
] e @«
= 3 loT Service

Communication

Device

Figure 2. Model of the IoT

For this report, we take the example of connecting a
doorbell (herein referred to as the ‘tweeting doorbell’) to
the ThingSpeak web service which will send a message to
Twitter whenever the doorbell was rung.

The connection from ThingSpeak to Twitter [1] is handled
by the application 'ThingTweet', a script independent from
the ThingSpeak API but available when using the API from
the ThingSpeak web service. Messages from ThingSpeak
are communicated to Twitter via an HTTP POST. This
feature actually enables users to bypass displaying data in a
channel and directly upload it to Twitter, if desired.

STRENGTHS AND WEAKNESSES

There are several notable reasons why we chose the
ThingSpeak API over other available IoT APIs. This section
will discuss the strengths and weaknesses of ThingSpeak in
comparison to a handful of its direct competitors, including
Carriots [4], SmartObject [25], Skynet [24], and
Sensorthings [22]. Each API offers a similar service to
ThingSpeak, although with some nuances. For instance,
Carriots seems to mainly focus on business and industry
applications. Hence, the API is not open source and charges
for parts of its services. On the other hand, other
alternatives like Skynet, SensorThings and SmartObject are
all open source, and can be changed and adapted to the will
and needs of the user just like ThingSpeak.

These open source APIs are quite similar in terms of
functionality, each with their own strengths. As an example,
the Skynet APl is most tested and used with Arduino
boards, therefore there is a lot of user generated programs
and support for using this particular board. On the other
hand, SmartObject is not as user-friendly as Skynet or
ThingSpeak, and one really needs to be knowledgeable of
programming in order to get started with this APIL It is
therefore not recommended for beginners or those who just
wish to experiment on a very basic level. Finally, the
SensorThings API on the surface appears to operate under
similar principles as ThingSpeak, such as using HTTP
requests to transfer data. Yet, the API has split its data
model into two parts; sensing and tasking. Hence, there is a
distinctive profile depending on if you are using the API to
simply gather sensor data, or to communicate with an
actuator. This would be most useful when troubleshooting
issues, or if you wish to use the API for either sensing or
tasking separately. Similarly however, all platforms have
the potential to be compatible with almost any open or
custom hardware, as long as it has connectivity to the
Internet and can talk to the aforementioned APIs.

ThingSpeak Strengths

The key thing which separates ThingSpeak from any of the
mentioned competitors is that it creates a sense of
community through the possibility of creating public
channels. It is noted to be the only open data platform
specifically designed for the IoT in ‘the cloud’ [11]. Also,
the API allows for very easy visualization of collected data
through using spline charts. Therefore it is visually
appealing and is much easier when examining collected
data compared to other open source APIs.

Another point in ThingSpeak's favor is the fact that it uses
Phusion Passenger Enterprise, a web and application
server. Therefore, the API provides additional support for
the programming languages Ruby, Python and Node.js.

These languages are noted to be powerful and popular, so
additional support and features for these are seen as a nice
supplement. Although the other open source APIs are able
to work with most languages, extra features for the most
popular ones are always a bonus. Further, it is unclear
whether or not the servers of the other APIs are running
Phusion Passenger.

Unlike Carriots, the APIs ThingSpeak, SmartObject and
SensorThings are open source and are therefore able to be
integrated with any hardware device, including Arduino,
Raspberry Pi and any home-made micro-controller. The
source for ThingSpeak includes processing HTTP requests,
storing (alphanumeric and numeric) data, processing
numeric data, location tracking and status updates. In
addition, anyone is able to develop the platform, so if a
desired feature does not exist, anybody is free to code it.
Therefore, open-source APIs that allow connectivity with
any micro-controller would be the ideal ones to choose
between when conducting any “do-it-yourself” (DIY)
project.

Another benefit of having an open source API is that it can
be run locally or on your own server. Therefore, a user is
provided with a lot of flexibility and control for their
projects. The advantage of ThingSpeak over the others
however, is that free hosting is provided for data channels.
As mentioned earlier, these channels can be private or
public. Not only does this make it easier for someone who
does not operate and maintain a server, but the use of HTTP
POST and GET for the data is relatively easy for
newcomers to web technology. Lastly, public channels also
serve as a source of inspiration, as users are able to examine
and admire the projects of others.

All things considered, the API which is strongest for
anybody wishing to connect an object to the IoT really
depends on exactly what the individual (or organization)
wishes to do. Each have their own strengths depending on
what is required. ThingSpeak excels at being one of the
simpler APIs to get started quickly, as well as the ability to
use a community server to host a channel to upload data. It
also provides additional features for Ruby, Node.js and
Python.

ThingSpeak Weaknesses

After considering all the strengths, there are some aspects
of the ThingSpeak API that can be called its weaknesses.
For example when uploading data to the API there is a limit
up one update per channel every fifteen seconds. We
postulate that the reason for this limit in uploads is due to
the excess bandwidth that could be used, and therefore
would end up costing ThingSpeak additional funds for a
non-profit service. This limit can be removed by taking the
whole API to another web host provider to run the API.
Although it is not a weakness in comparison with the
competing APIs introduced earlier, it would be nice to have
other types of charts available for graphing data, such as pie
charts, bar charts and histograms. However, it is very
simple to export the data to other programs that are able to
build more complex and colorful charts to display data.

As with many open source projects, using the ThingSpeak
API can be a hurdle for beginners. In other words,
ThingSpeak is not necessarily a ‘turn key’ API, although we
have noted it to be slightly simpler than some of its
competitors. Consequently, to use ThingSpeak some coding
knowledge is needed. Carriots or some of the other paid
APIs offer code snippets that make integration easier. As
they are paid, they offer more support as well. In a similar
manner, the ThingSpeak community is only moderately
active (roughly 3 days between posts on their forum) [28].
As a consequence, if one needs technical help from others
in the community, it may be frustrating to wait a relatively
long amount of time to receive a response.

Another weakness was found while developing the tweeting
doorbell example. One of the biggest downfalls of the API
and using Twitter is the fact that Twitter messages have to
be unique, or more specifically two identical messages can
not be used after each other due to spam protection on the
Twitter side. We can think of a number of examples where
the message will always be the same, for example an
automatic TV shutdown timer thats tweets “TV is
shutdown” or an autonomous car that parked “I am parked
in you garage”. When using this extension of ThingSpeak it
is therefore necessary to add unique data (such as a
timecode) to ensure undisrupted operation. It is perhaps not
necessarily a limitation of ThingSpeak itself but something
that should be kept in mind when working with one of its
features.

As a last note, we have to mention something about
privacy. Channels are by default set on private and users or
machines need a read or write key to access the data.
Changing the channel to public makes the data available for
everyone without the need for a read key. ThingSpeak does
not inform on their website where the data is stored and
how it is secured. It is also not known for what duration
data is stored on their servers.

TYPICAL APPLICATIONS

Although the original intended use of the ThingSpeak API
is to 'give voice' to everyday objects, it seems that there is a
very common emerging trend on what the users are
building and sharing with the IoT. Scholars note that the
IoT will be most useful in an organizational environment,
especially for inventory management, production
efficiency, waste management, urban planning,
environmental sensing, social interaction gadgets,
continuous care, emergency response, smart product
management, as well as other uses focusing on creating an
efficient and sustainable urban environment[18]. For
individuals and private homes, the IoT is predicted to
incorporate smart metering of electricity, home automation
and intelligent shopping [13]. Overall then, the typical
applications of any API used to connect objects to the IoT
is broad with far-reaching implications.

More specifically though, ThingSpeak is an open source
API. Therefore, we expect much more ‘home/private’ use
applications rather than organizational as this is the typical
way that new, open source technologies are first put to use.
Without a doubt, the majority of public channels are

focused on sensors in homes. Interestingly, most of these
were measuring weather data, especially temperature
(indoor/outdoor), humidity, light levels and atmospheric
pressure. Hence, most ThingSpeak users choose to apply the
API for personal measures. That said, it was not completely
uncommon for ThingSpeak to be applied to organizations
and some of those used it to monitor the temperature and
humidity of an office.

A second common use found for ThingSpeak is still
connected to light measurement, but not to determine how
bright a room is. Instead, ThingSpeak was used to measure
the amount of energy created by a photovoltaic panel [14].
This particular panel was located in a remote field in
Germany. It is not uncommon for roof space to be rented in
rural areas for placement of such panels where one can be
paid for feeding the public power grid. Therefore, many
owners of photovoltaic panels are nowhere near their
placement, which makes it critical to be able to monitor the
power generation from a remote location. The ability to
monitor panels allows owners to see which have the most
ideal placement, and also if there are any technical errors
with the panels.

Furthermore, still in line with measuring the environment,
ThingSpeak has also been used to measure and control the
temperature of a water bed [29]. This is interesting since
one can note the ideal temperature for getting into bed, and
also perhaps be able to detect when the bed is in use by
(unwanted) inhabitants, such as pets. Hence, there are many
different uses and necessities for measuring changes in ones
environment.

Finally, another common use is the use of ThingSpeak to
monitor the electric consumption of a household [21]. This
is useful for people to note the times which electricity
consumption is at its highest, and perhaps alter their usage
patterns to reduce grid load and save money. However,
there are some dangers with making this data public, which
will be discussed in the upcoming section.

SURPRISING APPLICATIONS

While truly surprising examples of ThingSpeak are
currently sparse, it is only a matter of time before more
outstanding applications arise. It is also interesting to
consider some ‘out of the box’ applications (or perhaps,
implications) of having so much device-use data available
by allowing ThingSpeak to upload data to the IoT.

One surprising example of using ThingSpeak is a project
called 'CheerLights' [6].This project allows people's lights
all across the world to synchronize, stay linked based on
social networking trends. It's a way to connect physical
things with social networking experiences. In short;
everyone can send a message to Twitter containing the
keyword #cheerlights. The 'TweetControl' App from
ThingSpeak is used to listening to Twitter, when a tweet
contains the keyword, TweetControl updates the
CheerLights ThingSpeak channel with the last command
received. The lights that listen to this channel will change
color. This project ended up being so popular that it won
the best DIY IoT project of 2013 [12].

Another example discovered made use of the 'React

application included in the ThingSpeak web service [23].
This application allows the user to trigger an HTTP request
or send a tweet when a channel meets a set condition
(hence, it appears the device is ‘reacting’ in an autonomous
way). In this example, by using geographical data, the
channel owner can ensure that their home thermostat is
turned on just on time depending on the proximity of the
owner [3]. This ensures that their home is the right
temperature upon arrival.

Although this is not using the ThingSpeak API specifically,
there has been a concept design by artist Nathan Brunstein
[17], which envisions a toaster that imprints the weather
forecast of the day on your toast. Hence, toast-eaters of the
future might not need to look further than their breakfast to
ascertain the weather. Unfortunately, this is only a concept
and is yet to be created. But, it does show creative ways to
employ the IoT.

Furthermore, judging from the current popular channels on
ThingSpeak, the use of the API to connect a doorbell to the
IoT is somewhat a surprising application. On the surface it
may seem as though it is quite a useless device to
communicate, but there are uses for those who may be hard
of hearing, or if the use of headphones prevents one from
hearing the doorbell. Therefore, a tweeting doorbell can be
seen as an unconventional and useful use of the ThingSpeak
application.

As a last point, we must consider the implications or
unintended use of this technology; crime may become
easier for criminals. If access is made to something as
seemingly innocent as electricity use in the home, or if for
instance, the temperature of the waterbed is monitored,
everyone could check if the residents are sleeping, or have a
night out. Even more worrisome is publishing the power
usage of ones domicile [10]. With the graphed information,
it is easy to see if these people are home and thus
consuming electricity. Additionally, for many channels,
users provide geolocation information. This private and
sensitive data is stored in the cloud, accessible for
everyone. Thus anyone can make predictions of people,
based on the data about their lives that they share with the
world.

GETTING STARTED

In this section we describe how to set up a small example
with ThingSpeak. Note that in this section we personally
address the user as 'you' to make directions easier to read.

First Steps

Firstly, although it is not required in actually setting up the
API, for ThingSpeak to be of any meaning, it is imperative
to have a micro-controller with an internet connection. The
type of micro-controller is completely up to the user, as
ThingSpeak is able to communicate with any type, as long
as it is networked. In our example, we have used an
Arduino board with an ethernet shield. Once the micro-
controller has been chosen, the first steps to setting up
ThingSpeak are always the same. After having signed up for
a new user account you can log in and create new channels
[27]. When logged in, you can create a new channel by

selecting Channels > My Channels and then Create New
Channel. The channel has an unique identifier key which is
used to identify the channel when reading or uploading
data.

Uploading Data

Each channel has up to eight fields where data (both
numeric and alphanumeric formats) can be stored, as well
as four additional fields for location details. All entries are
stored with an unique identifier and a date and time stamp.
Existing data can be imported from a “Comma-Separated
Values” (CSV) file, which is a popular format for storing
tabular data.

If you do not have existing data you can immediately
continue to putting your own data to your channel. This is
done by using the POST method in HTTP in combination
with your unique channel write key. In the channels view,
select the channel and select the API keys tab. From here
we can already reach the 'Hello world' stage with the API,
as seen in Table 1.

POST /update HTTP/1.1

Host: api.thingspeak.com

Connection: close

X-THINGSPEAKAPIKEY: (HGFKU61VOPOEO77B)
Content-Type: application/x-www-form-urlencoded
Content-Length: (number of characters in message)
fieldl=(hello world)

Table 1. Sending 'hello world' to field 1

This HTTP POST can be used in all kinds of programming
such as in the Arduino IDE. But, clearly it is desirable to do
more than just write 'Hello world' to a meaningless, object-
free channel, hence we will continue on how to get data to a
Twitter channel.

Arduino IDE and ThingSpeak Integration

One of the example uses of the ThingSpeak API was the
ThingTweet add-on, which enabled the creation of a
doorbell that would tweet (from the account of the doorbell)
whenever someone 'rang' it. For this example we used an
Arduino with an ethernet shield. The Arduino continuously
checks if there is a signal coming in, the signal would come
when the doorbell was pressed. In other words, the moment
the doorbell is pressed, an update is sent to ThingSpeak via
a simple HTTP post using the API. This post to the server
contained a message to be tweeted including the date and
time the doorbell when rang.

if (buttonState == HIGH) {
updateThingSpeak("fieldl=1&twitter=doorbelldaan&tw
eet=Ring Ring);
void updateTwitterStatus(String tsData){
if (client.connect(thingSpeakAddress, 80))

{ // Create HTTP POST Data

tsData = "api key=" + thingtweetAPIKey +

"&status=" + tsData;

client.print("POST
/apps/thingtweet/1/statuses/update HTTP/1.1\n");

client.print("Host: api.thingspeak.com\n");

client.print("Connection: close\n");

client.print("Content-Type: application/x-www-
form-urlencoded\n");

client.print("Content-Length: ");
client.print(tsData.length());
client.print("\n\n");
client.print(tsData);

}

Table 2. ThingTweet code on Arduino

The ThingSpeak APl was connected to a Twitfer account
that we created for the doorbell [8]. The date and time had
to be included to avoid having the message flagged as
spam, as described earlier. Connecting the accounts took
two clicks to accept and allowed the API to update Twitter.
To get this connection, log in, click Apps, click the
ThingTweet button, and finally click Link Twitter Account.

n 1 More

Tweets Tweets and replies

doorbell

doorbell
Hi Media Tech!

@ doorbell

Ring Ring, Someone was at the door on 03-06-2014 at 21:04

© doorbell
Ring Ring, Someone was at the door on 03-06-2014 at 16:03

Figure 3. Screenshot showing the Twitter doorbell

Retrieval of Data

To get the data from ThingSpeak you can retrieve the data
by time selection or by entry ID. The most direct way is to
use the HTTP GET method [27]. In case the channel is not
public (and by default it is not), retrieving data requires a
read key, which can be acquired in the channel view tab.

It is also possible to retrieve just the latest entry through
modifying the URI below; where the information in the
brackets will be replaced with the channel id of the user, the
field id and the type of data to be retrieved:

http://api.thingspeak.com/channels/
(channel id)/field/(field_id)/last.(format)

The channel supports GET formats including JSON, XML,
and CSV formats for integration into other (third party)
applications.

One example of how data retrieval can be automated is by
using Python, which can be run under most modern
operating systems, including Raspbian on the Raspberry Pi.
We have included a full code example below which
continuously checks a given channel for updates and prints
a message every time an update takes place.

import urllib, json
import datetime, time
import threading

channel = "10101" # channel id

read_api = "01ABCOl1" # API key
check interval = 5; # in seconds

next call = time.time()

url = "http://api.thingspeak.com/channels/" + channel +
"/feed.json?key=" + read_api

response = urllib.urlopen(url);

data = json.loads(response.read())

channeldata = data[u'channel']

channeldata = channeldata[u'last_entry_id']

cache = channeldata

print "RUNNING Doorbell Script"
print "CTRL+C to end"

def checkChannel():
global next_call
global cache
global channel
global read_api

url = "http://api.thingspeak.com/channels/" +
channel + "/feed.json?key=" + read_api

response = urllib.urlopen(url);

data = json.loads(response.read())

channeldata = data[u'channel']

channeldata = channeldata[u'last_entry_id']

if cache != channeldata:
print "CHANNEL UPDATE!"
cache = channeldata

next_call = next_call + check_interval
threading.Timer(next_call - time.time(),
checkChannel).start()

checkChannel();

Table 3. Python code for basic notifications

Presentation

As previously mentioned, aside from getting the data and
converting it to a graphic yourself, ThingSpeak can do this
automatically [5]. The API allows for numeric data
processing such as time scaling, averaging, median,
summing, and rounding. For this you use the chart
functionality that is a part of the ThingSpeak API. This
allows you to make visualizations of the data which can be
updated in real time. There is also a short script provided to
add it to your own website, shown in Table 4.

<iframe width="450" height="250" style="border:
lpx solid #cccccec;"
src="http://thingspeak.com/channels/

(channel _id)/charts/(field_id)"></iframe>

Table 4. HTML code to display channel charts

As you can see, it is not difficult to get started with
ThingSpeak with a little programming proficiency.

FINAL THOUGHTS

The IoT can provide a great number of benefits to our
modern society. As we have seen, there is much potential
for both individuals and organizations to connect objects to
the IoT. The vision of “smart cities” which allow for
maximum efficiency is at the forefront of the European
Digital Agenda.

The IoT was coined prior to the turn of the millennium, and
since then there are many open source APIs that one can
use if they wish to connect any object to the IoT. The
ThingSpeak API in particular is an excellent starting point,

as it provides a free platform for data exchange. This is
particularly useful for students, as there is no limit of
channels that can be used for connectivity without
additional costs. That said, the ThingSpeak web service is
more useful than the API alone, since it also provides web-
server maintenance (with additional services for popular
programming languages) and the ability to peek at other
projects through open channels.

When considering the future, it is not difficult to predict an
increasing miniaturization of technology. As such, almost
everything can potentially become capable of data
exchange. Micro-controllers will shrink and disappear into
the environment, leading to the IoT becoming ubiquitous
and omnipresent. As this happens, when will it stop being
called the "Internet of Things"? Instead, the normalcy of
intelligent, interconnected objects will no longer warrant a
special distinction for their connectivity.

Caution is also necessary when uploading data to the IoT.
One should not be overly insouciant with their personal
data. Consequently, trust is still a major issue. It is
important to consider if one can entrust personal data with
organizations. However, if the past few decades are any
indication, the perfunctory approach to protecting personal
information is lost online. Social networks encourage to
shed anonymity and an entire generation is consequently
raised to share with abandon. The current laissez faire
approach to data may produce a more personalized,
efficient and technologically driven future with the IoT. Or
perhaps, one not so favorable. All in all though, the IoT is
surely an interesting web technology that has the potential
to shape the future — and ThingSpeak is an easy way to get
acquainted with it.

REFERENCES

1. About Twitter: https://about.twitter.com/. Accessed:
2014-06-08.

2. Ashton, K. 2009. That “internet of things” thing. RFiD
Journal. 22, (2009), 97-114.

3. Automatic Thermostat Control Based on Location and
Weather: 2010.
http://iamshadowlord.com/2010/09/automatic-
thermostat-control-based-on-location-and-
weather.html. Accessed: 2014-06-08.

4. Carriots - Internet of Things Platform:
https://www.carriots.com/. Accessed: 2014-06-08.

5. Chart API:
http://community.thingspeak.com/documentation/api/
#charts. Accessed: 2014-06-08.

6. CheerLights - ThingSpeak:
https://thingspeak.com/channels/1417. Accessed:
2014-06-08.

7. Digital Agenda for Europe - European Commission:
http://ec.europa.eu/digital-agenda/. Accessed: 2014-
06-08.

8. Doorbell on Twitter: https://twitter.com/doorbelldaan.
Accessed: 2014-06-08.

9. EMA White Paper 2013. Cloud 2.0: Delivering Value to

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

the Enterprise.

Energy Monitor — ThingSpeak:
https://thingspeak.com/channels/10867. Accessed:
2014-06-08.

Features - ThingSpeak:
https://thingspeak.com/pages/features. Accessed:
2014-06-08.

Holiday Innovation: Tweet At Your Christmas Tree To
Light It Up: 2013.
http://www.npr.org/blogs/alltechconsidered/2013/12/
24/256888326/holiday-innovation-you-can-tweet-at-
your-christmas-tree. Accessed: 2014-06-08.

Holler, J. et al. 2014. From Machine-to-Machine to the
Internet of Things: Introduction to a New Age of
Intelligence. Academic Press.

Inferno Photovoltaic - ThingSpeak:
https://thingspeak.com/channels/10958. Accessed:
2014-06-08.

Internet-of-Things Architecture - Updated Reference
Model: http://www.iot-a.eu/arm/d1.3. Accessed:
2014-06-08.

Is the Cloud Really Just the Return of Mainframe
Computing?: 2011. http.//sqlmag.com/cloud/cloud-
really-just-return-mainframe-computing. Accessed:
2014-06-08.

Jamy - Smart Toaster: 2011.
http://legrandours.com/3924/647021/gallery/jamy-
smart-toaster. Accessed: 2014-06-08.

Kyriazis, D. et al. 2013. Sustainable smart city IoT
applications: Heat and electricity management &
Eco-conscious cruise control for public
transportation. World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2013 IEEE 14th
International Symposium and Workshops on a
(2013), 1-5.

Magrassi, P. and Berg, T. 2001. A world of smart
objects: The role of auto identification technologies.
Strategic Analysis Report, Gartner. (2001).

Mattern, F. and Floerkemeier, C. 2010. From the
Internet of Computers to the Internet of Things.
From active data management to event-based
systems and more. Springer. 242-259.

My house power consumption - ThingSpeak:
https://thingspeak.com/channels/2567. Accessed:
2014-06-08.

OGC SensorThings API: http://ogc-iot.github.io/ogc-
iot-api/. Accessed: 2014-06-08.

React:
http://community.thingspeak.com/documentation/app
s/react/. Accessed: 2014-06-08.

Skynet: https.//www.npmjs.org/package/skynet.
Accessed: 2014-06-08.

SmartObject: Attps://github.com/mjkoster/SmartObject.
Accessed: 2014-06-08.

26. Srivastava, L. 2011. The Internet of Things—Back to
the Future. Proceedings of IoT 2011 Conference 16th
May (2011).

27. ThingSpeak Channels:
http://community.thingspeak.com/tutorials/thingspea
k-channels/. Accessed: 2014-06-08.

28. ThingSpeak Community Forum:
http://community.thingspeak.com/forum/. Accessed:
2014-06-08.

29. Water Bed - ThingSpeak:
https://thingspeak.com/channels/277. Accessed:

2014-06-08.

30. What is Internet of Things (IoT)? - Definition from
Whatls.com: 2013.
http.://whatis.techtarget.com/definition/Internet-of-
Things. Accessed: 2014-06-08.

31. What is machine-to-machine (M2M)?: 2010.
http.://whatis.techtarget.com/definition/machine-to-
machine-M2M. Accessed: 2014-06-08.

32. Introduction to the “Internet of Things” and
ThingSpeak. ThingSpeak Community.

