
Automated Web Scraping APIs

Daan Krijnen
Leiden University

naad.daan@gmail.com

Rinus Bot
Leiden University

RinusBot@gmail.com

Georgios Lampropoulos
Leiden University

g.lampropoulos1987@gmail.com

ABSTRACT
Web scraping is a very useful web technique to gather and
structure different types of data from the internet. We anal-
yse how different fields of webscraping developed since the
beginning of the internet. It will become clear how the rise
of scraping bots was driven by the publication of scraping
specific library’s and slowed down by rising tensions in the
legal field and the alternative option of official API’s. The
operating principles of webscraping are explained in detail
based on a division in to three categories: synctactic web
scraping, semantic web scraping and computer vision web-
page analysis. The strengths and weaknesses of two types of
webscraping will be discussed: web scraping by coding and
web scraping by creating an automated API with the help
of a visual interface (Kimono and Import.io). The typical
applications of data mining, research, marketing, company
competion, personal tools and data combination will be dis-
cussed in more detail. At the end of the paper we describe
the development of a quick application in order for people to
get started with this technology.

Author Keywords
web scraping, APIs, css, semantic web, computer vision

INTRODUCTION
Purpose
To manage the information explosion which the dawn of the
internet has brought upon us, it is necessary to handle knowl-
edge (data) in an increasingly efficient way. The purpose of
web scraping in the most general sense, is to order knowl-
edge available through the internet, in structures that allow
for more convenient ways of gaining understanding or prac-
tical advantage from this knowledge.

Web scraping is closely related to, but should not be con-
fused with, web indexing (also known as web crawling or
web spidering) which distinguishes itself from web scrap-
ing by the fact that the extracted data is more generic and
directed towards the internet in general. For example, web
indexing is employed by companies that offer web naviga-
tion services such as Google and Yahoo.

Context and History
Figure 1 will be used as a guidance for discussing the context
and history of web scraping.

The big colored horizontal bars represent developments that
happen over multiple years and do not have a clear starting

Figure 1: Timeline of webscraping history

point. The named events surrounded by circles represent cer-
tain milestones linked to a specific horizontal bar by color.

scraping bots
A web scraping bot is basically just a piece of software that
automatically scrapes certain targets at specific times. Such
a program could in theory be written in any programming
language. The rise of the scraping bots coincided with the
rise of the Internet and, as shall described in coming para-
graphs, has had a large influence on other developments within
the webscraping history.

scraping specific libraries
The internet itself was a big factor in the flourishing of the
open source community. This community has been respon-
sible for the bulk of scraping specific libraries that have been
made available over the years for a wide variety of pro-
gramming languages. One specific library, named Beauti-
ful Soup, is mentioned as a milestone in figure 1 Beautiful
soup is a library designed for Python and released in the year
2004. It is widely considered as the most sophisticated and
advanced library for the purpose of webscraping.

Scraping related lawsuits
The concept of webscraping has been the subjected to quite
some lawsuits for two major reasons:

1. Web scraping often involves collecting/ordering material
of which the deployment is part of the data sources core
business

2. Automated web scraping can be taxing on the servers of
the targeted websites.

1



Proportionally to the insight that data is the new gold, the
first mentioned reason is increasingly functioning as the main
motivator behind big lawsuits.

To fully comprehend this legal history it is important to first
look at a non-internet-related lawsuit that was filed in Amer-
ica in 1991. The case is generally referred to as: Feist v.
Rural [1]. In the case appealed, Feist (a telephone number
aggregator) had copied information from Rurals telephone
listings to include in its own, after Rural had refused to li-
cense the information. Feist was caught copying the num-
bers because Rural had included a small number of phony
entries in its list to detect copying. The court ruled that in-
formation contained in Rurals phone directory was not copy-
rightable and therefore no infringement existed [2]. By this
decision the court established that information alone, with-
out a minimum amount of creativity cannot be protected by
copyright.

This case clearly relates to the debate of the legality of web
scraping. As we go through the 90s with this court ruling
weighing in on the discussion, the rise of the internet is not
yet resulting in filing any major cases against web scraping
activities.

In the year 2000 this changes when the first big court case
concerning web scraping arrived in the form of: Ebay v. Bid-
ders Edge (BE). BE was an aggregator of auction lists and in-
cluded a substantial amount of auctions that originated from
Ebay, on its site. Ebay wanted BE to stop doing so, allegedly
because the vast amount of queries that BE requested where
a burden on Ebays network. When technical measures to
prevent the web scraping from happening failed to be effec-
tive, Ebay suid BE.

The court judged in favour of Ebay with the following rea-
soning: Even though BEs use of ebays bandwidth was rather
small (1.5%), it did potentially harm Ebay since other com-
panies might follow BEs example. This described harm falls
under the legal definition of trespassing to chattels. Inter-
estingly later that year Ebay launched an API on November
20th 2000.

Through the 00s there have been multiple similar cases with
differing outcomes. In case the lawsuit was in favour of the
prosecutor it was based on the application of the trespassing
of chattels as described earlier

2009 brought a change to that legal tendency with the case:
Facebook v. Power.com. Power.com offered a website that
enabled its users to aggregate data about themselves that
is otherwise spread across various social networking sites
and services. Facebook sued power.com with the accusation
that it had copied copyrighted material. Facebook does not
own the copyright of its users profile data (which was what
power.com effectively used in its service), but argued that
it owned the copyright to the websites framework surround-
ing the users data. According to facebook, the power.com
scraper operated in a manner that it required to copy the en-
tire Web page in order to extract the users data and thus made

use of copyrighted material.

Facebook won this court case with the described reasoning.
The shocking thing about this is that the process of web
scraping itself was basically criminalized by this court rul-
ing. [3]

Website provided APIs
Web APIs started to appear in the early 00s, the first one
being the salesforce.com API. They are of great relevance
when discussing the topic of webscraping, since they of-
fer developers an alternative way of gathering data provided
from websites. Web APIs were partly developed for this spe-
cific reason [4]. Not only do they provide an alternative way
to gathering information on the web, they also provide easier
and more consistent access to this information.

Visual interfaced scraping software
In the early 10s the first scraping software with visual inter-
faces were developed. The launch op Kimino Labs in late
2013 is visualised as a milestone in figure 1 since it was the
first scraping software with a visual interface that was so
easily available and usable. Though it is only just released
and still in beta it is already heavily used (15.000 users as
of 03-04-2014) [5]. It is interesting to see what this simpli-
fication of webscraping will bring us in the future, and how
these platforms might compete with official APIs. What is
certain is that this new development democratizes the know-
how for the business of web scraping in an unprecedented
way, which is a good thing.

OPERATING PRINCIPLES
To understand the concept of webscraping, including the
visual interfaced web services, it is important to compre-
hend the technological operating principles of the technol-
ogy. Web scraping is done by using specific methods on
what data to gather and aggregate. In order to achieve this, a
well understanding of programming, web technologies such
as HTML, and the structure of data on the web (e.g., the
Document Object Model (DOM)) is required. This required
knowledge and understanding is reduced by providing a web
scraping API.

Automated web scraping can be categorized in 3 main tech-
niques which are widely used by web scraping software[6].

• Syntactic Web Scraping

• Semantic Web Scraping

• Computer vision web-page analyzing

Syntactic Web Scraping
Syntactic web scraping extracts information from the web-
site structure by parsing HTML, CSS and other typical web
languages. To do so several techniques are used:

• Content Style Sheet selectors: Content StyleSheets define
the visual properties of HTML elements. These visual
properties are mapped to elements through the use of CSS

2



Figure 2: Types of web scraping techniques

selectors, defined through a specific language. Therefore,
CSS is one technology that serves to select and extract
data.

• XPath selectors. Similarly to CSS selectors, the XML
Path Language is a different language for HTML node se-
lection.

• URI patterns. URI patterns allow to select web resources
according to a regular expression that is applied on the
resources URI. While XPath or CSS selectors are able to
select an element at document level, URI patterns allow
selecting documents, i.e. resources representations, ac-
cording to the resources URI.

• Visual selectors. Visual information can be used to se-
lect nodes. HTML nodes are rendered with a set of visual
properties given by the used browser. It is common that
human users prefer uniform web designs. Web designers
thus make elements of a same kind to be rendered with
similar visual properties to help identification. A visual
selector is a condition that combines several visual prop-
erties of an element to identify the elements class.

Semantic Web Scraping
As the semantic web grew, ways and frameworks of handling
the semantic data, were developed.

Consequently, the data extracted by the syntactic web scrap-
ing can be mapped to semantic web resources, for better
representation and manipulation. To do this, several frame-
works can be used, like the Resource Description Frame-
work(RDF) and the Web Ontology Language (OWL). The
failure of the semantic web, so far, makes this technique non-
preferable by the most applications.

Computer Vision Web page Analysis
Finally, machine learning and computer vision techniques
can be used to identify and extract information from web
pages by interpreting pages visually as a human being might
and then associate these to css selectors [7]. One example of
this is diffbot[8].

STRENGTHS AND WEAKNESSES
The previous sections mostly discussed webscraping by cod-
ing, however, from here on we are focusing more on the
subject of automated APIs scraping with visual interface for
webscraping. The two main webservices that provide this
technology are Kimono Labs and Import.io. Both require
the user to create an account to use the service. In this sec-
tion we will discuss the strengths and weaknesses of these
automated services versus coded, or manual, webscraping.
Before we can juxtapose coding versus automated, we must
distinguish the general strengths and weaknesses of the tech-
nology. As the uses of the technology range from project to
project, as will become clear later on in this paper, there are
most likely more points to be defined.

Scraping by Coding
First of all the strengths of web scraping in general. It offers
you the chance to get any data you want in a structured way.
This structure can be can be based on the syntactic, com-
puter vision or semantic abstraction technologies discussed
before. A great strength of web scraping is the fact that it
enables the user to structure the data in the way it suits best
for the underlying project. In other words, you are in full
control of data that you do not control. It is this data that is
another strength of scraping. It is based on the data that is
build to be shown to the viewers of the website. This means
that it has the highest priority of the web developer to keep
this data up to date, and thus provides the scraper with high
quality, up to date data. This point also explains why it is
sometimes better to scrape data instead of using a provided
public API. The core functionality of most web services lies
not in maintaining an API, but in maintaining the html front
end their (paying) users see. Linked to the points above is
also the fact that there are no fixed rate limits on data queries,
and usage is not logged in a way other than that of a normal
web user. Some of the weaknesses of scraping web data are
the following. First, an update to the layout of the website,
or merely the renaming of certain elements in the CSS could
lead to a malfunctioning scraper. Secondly you will need
programming skills to write a scraper, and you need a server
to run the scraper. Lastly there is never any documentation
on how to scrape the website you want to scrape. Each case
is different, and requires a custom built scraper.

Scraping with Visual Interfaced Services
To compare the above strengths and weaknesses in compar-
ison with automated APIs such as Kimono or Import.io, it
is easiest to start with the weaknesses discussed above, and
explain the strengths of automated web scrapers. To use Ki-
mono or Import.io the user does not need any programming
experience. The visual CSS element selection works quite
well in both services and offers the user to create a complete
working API without any programming knowledge. It also

3



enables users to create a web scraper without the need of a
server, it all runs online. A big advantage is the fact that the
resulting API uses standard API structures in multiple for-
mats, so that the data can be shared easily with other devel-
opers. An additional service you get from Kimono and Im-
port.io is a notification on failed updates of the API. Meaning
you do not need to actively check if your application is still
working. The fact that the user is provided with these ser-
vices also means that you rely on these third party services to
provide you with your data feed. It is very important to keep
in mind that at this moment both of the services discussed,
Kimono and Import.io are in beta status. This means that the
usage, as well as the pricing (still free for now), can change
in the future. Also there can be some rate limits, something
a manual scraper does not encounter. Lastly it is important
to realise that if you have the skills required, building your
own scraper will always be more customizable than any of
these services. If you for instance need to get calendar data
from a website, it is usually easy to use Kimono or Import.io.
It requires you to identify the elements that contain the date,
time and description, and usually the service does the rest for
you. If you need to scrape data that is not easily identified
via CSS, for instance script generated textboxes that change
based on the context of the location of your mouse position,
it might be better to write your own scraper.

TYPICAL APPLICATIONS
As could be seen in the section above, there are many aspects
that can be considered when using a web scraper. This can
be extrapolated to the applications of scraping. Also, the
vague legality of building a project based on scraped data
makes it difficult to distinguish projects that are relying on
scraping technologies. We can, however, give an overview of
the most typical fields the technology is used in. With some
of these fields we will give short examples of how such a
project could look like. The fields we consider being typical
for web scraping are:

• Data mining

• Research

• Marketing

• Company competition

• Personal tools

• Data combination

First, data mining, is a field that is very broad. One of the
main sectors in which data mining is often used is in the
Spam business. The usage of web scrapers to aggregate
email addresses to distribute unwanted emails is a widely
used, but hard to proof method.

Second is research, which could be research by any party.
For instance a university doing research on the use of Twit-
ter. In that case the quality of the data must be as good as it
gets, which means not using the API. Writing a scraping bot
for Twitter, or using any of the services mentioned above,

will provide the research institute with the same data as the
users they are investigating are using.

In marketing applications closely related to the first and sec-
ond usage examples can be thought of. For example re-
searching the development of your brand awareness cam-
paign on multiple social media, and logging each and every
activity of that for future usage.

Furthermore it can be used by companies to keep track of
their competitions activity. For instance by monitoring the
prices they ask for their products. This can be easily pro-
jected on the next point in the list, where you can imagine
that individuals will make use of scraping technologies in
order to keep track of the best deals online.

Lastly scraping can be used to structure similar data from
different sources to combine them in a single source. For
instance the combination of all the publications on crowd-
funding websites could be joined together to keep track of
the developments in that field.

Many of the possible applications are only limited by the
imagination of the user/developer. In the next section we
will exemplify the limits of imagination in respect to web
scraping.

SURPRISING APPLICATIONS
Not mentioned above, the domain of journalism, or more in
particular data journalism can be both as a typical applica-
tion that produces many surprising applications. It is impor-
tant to keep in mind that in any case the data is merely a
source to build a story on top of. For instance the job ap-
plications on many websites were tracked and linked to a
list of many companies, to find abstract from the resulting
linked data if any of the companies was growing. Another
example is using Import.io to combine the results of the In-
dian elections, to power real time data visualizations as the
results came in. As India did provide a website where the
data could be seen, a web scraper built in Import.io made it
possible to combine this data and offer it in a structured way
to create insights the government was not able to provide to
journalists [9].

GETTING STARTED
This section will discuss briefly how to create a working API
with one of the discussed services, namely Kimono. It will
guide you through the selection of the data, the structuring
of the data, the options in Kimono on calling the data, and
how to create a simple visualization from the data. For this
section we will create a small API that gathers the delay data
from the major railway stations in the Netherlands.

Kimono interface
Kimono Labs offers a bookmarklet that starts the entire pro-
cess of creating your first API. With the bookmarklet placed
in reachable place, we head to the website that requires scrap-
ing. In this case the mobile website of the NS, m.ns.nl
offers a simpler view that could provide us with easier se-
lectable data. In the departure section we select Utrecht Cen-

4

m.ns.nl


(a) delay selection (b) add data type

(c) reject incorrect data (d) name your API

Figure 3: API creation process

Figure 4: Resulting JSON endpoint

traal, which leads us to http://m.ns.nl/actvertrektijden.
action?from=UT. At this point the kimonify bookmarklet
should be pressed, bringing us to the main Kimono interface,
which they call the ”Extractor View”.

The next step is selecting the data. As we are interested in
creating an API with delay data, we click on one of the de-
lays times, for instance

+6. Kimono will then automatically offer you similar data
based on the CSS selectors that were used to create this se-
lection, select the other ”+ [n] min” texts as seen in figure
3a. Discard any bad data and select the correct data.

In Kimono it is possible to add different data types. So in-
cluding the destination of the delayed train is an option as
seen in fig 3b and 3c. After the correct data is selected the
API is ready. After clicking ”done” Kimono will ask you
for a name, and the update frequency, which is in our case
”on Demand” as seen in figure 3d. This results in a fully
functional API for Utrecht Central Station delays, that can
be called on demand.

Resulting End Points
In your Kimono Account the endpoints of your new API can
be tested in the browser. A Json response would look like
the one in figure 4.

URL Parameters
An interesting option in Kimono is the fact that it detects
wether the URL has any customizable parameters that lead
to similar pages that might have interesting data. To call our
API we normally call http://www.kimonolabs.com/api/{API_
ID}?apikey={YOUR_API_KEY}, which results in a response as seen
before. However, adding the URL parameter from=ASD to the URL will
lead to a response that is from the Amsterdam Central Station departure
times.

visualization
Using OpenFrameWorks we created a small visualization that loops through
the different stations using the URL Parameters with a html GET request.

The returned JSON is then parsed and saved into an array and further pro-
cessed to compute the mean delay times of each station(figure 5).

Figure 5: Screenshot of our developed application

FINAL THOUGHTS
Being able to scrape the web is very empowering and it is quite interesting
to see how the use of this web technology will develop in the years to come.
The democratization of web web scraping through interfaces like Kimono
Labs and Import.io are very exciting and positive developments. The legal
pressures could endanger the practice of web scraping, but raising public
awareness around this issue might positively influence the debate.

REFERENCES
1. Wikipedia Feist v. Rural.

https://en.wikipedia.org/wiki/Feist_v._Rural.

2. http://www.law.cornell.edu/copyright/cases/499_
US_340.htm.

3. Rami Essaid. Is web scraping legal?
http://www.distilnetworks.com/
is-web-scraping-illegal-depends-on-what-the-meaning-of-the-word-is-is/.

4. The History Of API’s. http:
//apievangelist.com/2012/12/20/history-of-apis/.

5. Kyle Vanhemert. This Simple Data-Scraping Tool Could Change How
Apps Are Made. http://www.wired.com/2014/03/kimono/.

6. Carlos A. Iglesias Mercedes Garijo Jose Ignacio Fernandez-Villamor,
Jacobo Blasco-Garcia. A Semantic Scraping Model for Web Resources,
Applying Linked Data to Web Page Screen Scraping.

7. Muntasir Mashuq MichelZiyan Zhou. Web Content Extraction Through
Machine Learning.

8. Diffbot: Extract content from standard page types: articles/blog posts,
front pages, image and product pages.
http://www.diffbot.com/.

9. Alex Gimson. This Just In: A Data Journalism Webinar with Bea
Schofield. http://blog.import.io/post/
this-just-in-a-data-journalism-webinar-with-bea-schofield.

5

http://m.ns.nl/actvertrektijden.action?from=UT
http://m.ns.nl/actvertrektijden.action?from=UT
+6
http://www.kimonolabs.com/api/{API_ID}?apikey={YOUR_API_KEY}
http://www.kimonolabs.com/api/{API_ID}?apikey={YOUR_API_KEY}
from=ASD
https://en.wikipedia.org/wiki/Feist_v._Rural
http://www.law.cornell.edu/copyright/cases/499_US_340.htm
http://www.law.cornell.edu/copyright/cases/499_US_340.htm
http://www.distilnetworks.com/is-web-scraping-illegal-depends-on-what-the-meaning-of-the-word-is-is/
http://www.distilnetworks.com/is-web-scraping-illegal-depends-on-what-the-meaning-of-the-word-is-is/
http://apievangelist.com/2012/12/20/history-of-apis/
http://apievangelist.com/2012/12/20/history-of-apis/
http://www.wired.com/2014/03/kimono/
http://www.diffbot.com/
http://blog.import.io/post/this-just-in-a-data-journalism-webinar-with-bea-schofield
http://blog.import.io/post/this-just-in-a-data-journalism-webinar-with-bea-schofield

	Introduction
	Purpose
	Context and History
	scraping bots
	scraping specific libraries
	Scraping related lawsuits
	Website provided APIâ•Žs
	Visual interfaced scraping software

	Operating principles
	Syntactic Web Scraping
	Semantic Web Scraping
	Computer Vision Web page Analysis

	STRENGTHS AND WEAKNESSES
	Scraping by Coding
	Scraping with Visual Interfaced Services

	Typical Applications
	Surprising Applications
	Getting Started
	Kimono interface
	Resulting End Points
	URL Parameters
	visualization

	Final Thoughts
	REFERENCES 

