
Online music recognition: the Echoprint system

ABSTRACT
Echoprint is an open source music identification system
build by The Echo Nest. This paper discusses the workings
of the Echoprint system. The paper explains topics such as
the purpose, context, history and operating principles of
Echoprint, combined with the strengths, weaknesses and
both intended and surprising applications of the system.
These topics are discussed so that a proper overview of the
system is drawn. Interested readers can follow the process
in the getting started section, which explains briefly how to
set up the system and how to use it. The paper is concluded
by some final thoughts about the Echoprint system and its
future.

Figure 1. The Echo Nest logo

1. PURPOSE, CONTEXT AND HISTORY
Echoprint [4] is a music identification system build by The
Echo Nest [9], which utilizes acoustic fingerprinting
technology for the identification functionality. Think of
actual human fingerprints being used for identification.
Acoustic fingerprinting uses the same principle, but by
means of audio. Echoprint consists of a set of components
which can be used to either experiment with and/or set-up
an audio identification system/service. An acoustic
fingerprint is achieved by creating a condensed digital
summary of the audio signal. The system “listens” to the
audio signal being played. An algorithm places marks on,
for example, different spikes in frequency of the signal and
is able to identify the signal by matching these marks to a
database on an external server. The signal can include all
different forms of audio, songs, melodies, tunes and for
example sound effects from advertisements. A more in
detail description will be given later.

By developing an identification system like Echoprint, it is
made possible to monitor the ‘usage’ of music online.
Similar systems have been used in many different cases of
music classification, copyright detection, measuring usage

of music on peer to peer networks and for creating
catalogues in the music industry. The main purpose of
Echoprint is, however, music recognition. The audio data
for recognition can be provided by all kinds of platforms,
but comes mainly from phones or computer systems. After
processing an audio signal, Echoprint can tell what song
and kind of music is currently playing and reports the match
back to its user. The Echoprint system is open-source and
installable on private servers. The database needed for the
identification of music is also made openly available and
downloadable by the publisher itself, although it’s currently
outdated.

The Echo Nest is a music intelligence and data platform for
developers and media companies. Based in Somerville,
MA. The Echo Nest was originally a research spin-off from
the MIT Media Lab to understand the audio and textual
content of recorded music. Its creators intended it to
perform music identification, recommendation, playlist
creation, audio fingerprinting, and analysis for consumers
and developers. Leading music services (Clear Channel’s
iHeartradio, MOG, Rdio, SiriusXM, Spotify), editorial,
video and social media networks (BBC.com, Foursquare,
MTV, Twitter, VEVO, Yahoo!), connected device
manufacturers (doubleTwist, Nokia) and big brands (Coca
Cola, Intel, Microsoft, Reebok) together, resulting in over
100 million worldwide users of The Echo Nest platform. [6]

• The Echo Nest was founded in 2005 from the dissertation
work of Tristan Jehan and Brian Whitman at the MIT
Media Lab.

• In June 2011, the company released Echoprint, an open
source and open data acoustic fingerprinting system.

• On March 6, 2014 Spotify announced that they had
acquired The Echo Nest.

2. OPERATING PRINCIPLES
Echoprint’s ability to identify a music track substantially
fast and with high accuracy, makes it one of the most
valuable music identification systems available.
Additionally, it can even recognize noisy versions of the
original track and even recordings performed by mobile
devices with noise “bleed” by environmental factors.

The three main parts of Echoprint’s architecture are (figure
2):
• The code generator: responsible for the audio-to-code

Cors Brinkman
Leiden University

cors.brinkman@gmail.com

Manolis Fragkiadakis
Leiden University

vargmanolis@gmail.com

Xander Bos
Leiden University

xander.bos@gmail.com

Page ! of !1 5

mailto:cors.brinkman@gmail.com
mailto:vargmanolis@gmail.com
mailto:xander.bos@gmail.com

conversion
• The server: capable for storing and indexing the code
• The data: gathered from other Echoprint users and

partners

Figure 2. Schematic of the technology

The code generator, using advanced signal processing,
“fingerprints” audio data. Echoprint captures the relative
timing between success beat-like onsets detected in the
audio, creating {time, hash} pairs. It captures the peaks in
the spectrogram and stores them based on their time of
occurrence (figure 3). Each song then can be identified by
these pairs since they are unique.

!

Figure 3. Onset detection on the spectrogram

First it computes a whitening filter based on an 11Kz mono
signal which is capable of reducing the noise from the
environment and lead to a “clean” recording. Then, the
onset detection is performed on the lowest 8 bands in the
MPEG-Audio 32 band filterbank (subband decomposition).
This is done because it is easier for the algorithm to detect
the onsets on lower frequencies. The magnitude of the
signal in each band is compared to a predefined
exponentially-decaying threshold. When that threshold is
exceeded, an onset is recorded. After that the threshold is
adapted to match the new signal peak. Subsequently, the

onset material is hashed into a 20 bit space and stored
alongside the time of the onset. The code generator then
pushes that information into the database for comparison.

The server stores the occurrence of the onset in a list and
indexes each onset in an inverted index. The database
contains predetermined tracks with their ID and their
metadata (artist, album, track name). Each track is splitted
into 60 seconds segments and the code for each segment is
represented as terms of a document ID in an inverted index.
The combination of the unique track IDs plus the segment
number is used as the document ID. Then, the querying is
performed by looking up all the queries in the inverted
index and returning a score of overlapping onset queries
between the query and each target track. The score
determines whether there is a match and how similar the
songs are.

3. STRENGTHS AND WEAKNESSES
According to J. Haitsima and T. Kalker the definition of an
audio fingerprinting system relies on its robustness,
reliability, fingerprint size, granularity, search speed and
scalability [12].

It can easily be deduced that the powerfulness of Echoprint
lies on its fast and accurate recognition. The overall
architecture provides an over-the-air song detection with the
advanced signal processing accounting the noise from
outside sources and the medium of transportation.
Moreover, it can identify remixes, live versions and
sometimes even covers from the original song while the
time needed to do such an identification is even less than 20
seconds of recording. The open source server and part of
the code generator allow developers to further explore the
potential possibilities.

However, Echoprint isn’t a fully open source system,
because the code generator relies on proprietary Echonest’s
algorithms that are essential part of the identification and
classification procedure. The difficulty on the configuration
of the API and the database adds to the otherwise few
weaknesses of the system.

Some other technologies include Shazam, Soundhound and
MusicBrainZ. Shazam is the most well know music
identification application that is significantly similar to
Echoprint. With its well built user interface and its
prevalent presence in the smartphone world, it is considered
as Echoprint’s biggest competitor. While it is easy to use
and has already an application, its API is not public and
does not allow modifications. Similarly, Soundhound and
MusicBrainZ provide a mobile music and audio recognition
service with the first one being able to even identify music
through singing or humming and the later providing an
open content music database.

The final word is up to the users of whether they prefer to
use an overall end product or discover and further explore
Echoprint and modify it according to their preferences and
demands.

Page ! of !2 5

4. TYPICAL APPLICATIONS
Typical applications for Echoprint are straightforward,
music recognition and digital music advertising in other
systems such as Spotify, but also in commercials or
products of a wide range of worldwide corporations.
Echoprint correctly adds the metadata and indexes playlists
of different online radio, video and streams.

Other well known and typical applications of acoustic
fingerprinting systems are applications of competitors like
Shazam and Soundhound, as discussed in section 3.
Strengths and weaknesses. Open the app on your phone and
record a few seconds of the music you are currently
listening to or simply hum it. Their databases returns, in the
ideal scenario, the information of the song you want and are
looking for.

5. SURPRISING APPLICATIONS
During the research on Echoprint, some surprising
applications were encountered. A good example is the fact
that the system is being used for copyright detection. Even
more surprising is the fact that huge platforms such as
Spotify and Pandora use the Echoprint system to index their
online playlists and radio-streams. By indexing the songs,
playlists and queries, a valid estimation of usage of songs
can be measured.

Another surprising and creative application of the Echoprint
system is the 3D music maze (see figure 3)[1]. This app is
an experiment from The Echo Nest lab in using alternative
interfaces for music exploration and discovery. The user can
walk through a generated maze of 3D album art boxes. By
walking close to the album art, the music of the album is
being played. It uses The Echo Nest artist similarity and
playlisting APIs to build logical clusters of artists and
songs. It uses the 7Digital media [2] for the album art and
30 second samples and three.js [8] for all the 3D modelling.

Figure 4. The Echo Nest lab, Maze experiment

The Echoprint system has also been used for further
research in the field of audio recognition. For instance on
predicting music taste by movie taste and vice versa[7].

6. GETTING STARTED
In this section it will be explained how to get started with
the Echoprint system. There are two important elements
that are required to fully utilize this system. For the both of
them, it will be briefly explained how to set them up and in
more detail it will be explained how to use them.

6.1 FIRST PART - CODEGEN PROGRAM [3]
The first element is the codegen program. This program is
written in C++ and should compile/work on all major
platforms. Through a command line interface, it takes an
audio fragment to generate a special code which later can
be used to either store or find matching sounds. There are
no binaries available for download, so it has to compiled by
hand. To do this, a set of dependencies/tools are required to
be available. These are listed here:

• CMake; a software that enables build automation,
similar to Linux’s make program

• FFmpeg; a software that is widely used for audio-
and video conversion

• Boost++; a library that makes C++ a more
productive programming language

• Taglib; a library that enables reading and editing
of metadata in popular multimedia formats

• Zlib; a library used for data compression

In the documentation it rather clearly explained how all of
these are used. The codegen program can generate codes in
two different ways. It can either generate a code based on a
single file or work through a list of files – outputting the
result in JSON format.

The command is structured as follows:  
codegen.exe [f i lename | -s] [seconds_start]
[seconds_duration] [< file_list (if -s is set)]

Addit ional parameters are [seconds_star t] and
[seconds_duration]. These parameters are used to determine
what part of a sound file will be used to generate a code.
[seconds_start] is used to set a starting point for analysing
and [seconds_duration] determines how many seconds after
the starting points are being taken into account. Also note
that the brackets are not used in actual commands.

A simple usage example:  
codegen.exe audio_file1.mp3 0 30

In this command the first thirty seconds of the
audio_file1.mp3 will be analysed. After analysing it will
output the code, which is a long single line of text
consisting of letters and numbers. Its length is dependent on
how many seconds it had to analyse. How this code can be
used will be explained in the next part.

Page ! of !3 5

6.2 SECOND PART – SERVER PROGRAM [5]
The second element is the server. The server consists of a
few parts, each written in a different programming
language. These are the parts:

• Echoprint custom component for Apache Solr
• Tokyo Tyrant database
• Python-based API layer

The Apache Solr part is used to keep indexes of the
Echoprint codes. The actual data that belongs to an index is
stored in the Tokyo Tyrant database. The API layer contains
the logic for finding and inserting audio. It should be noted
that the Tokyo Tyrant database is supported on Linux
systems only, which effectively makes the server only
runnable in a Linux environment. And like the codegen
software, the server has some dependencies:

• Java; a well-known runtime environment which
in this case is required for Apache Solr

• Tokyo Cabinet; a library required for Tokyo
Tyrant to run

• Python; an interpreted language which is used for
the API layer

o Web.py; an extension that allows for a
HTTP request based API

Installing these dependencies is relatively easy as they’re
well-documented. To get the server running, the Apache
Solr server and Tokyo Tyrant database server must be
started. To enable access to them, the api.py program must
be run – which is included in the Echoprint server
“package”. Now we access to two commands. Ingest, which
is used to add new audio tracks to the database and query,
which is used to find matching sounds. The ingest
command is a HTTP POST request.

The URL that will trigger the commands will look similar
to this example:  
http://localhost:8080/ingest

The POST body has the following parameters:
• fp_code; the code generated by the codegen

program
• track_id; optional parameter that allows you to

give your track a specific ID
• length; the length of the audio fragment analysed

in seconds
• codever; the version of the codegen software

used to generate to code
• artist; optional value to specify the name of the

artist of the audio fragment
• release; optional value to specify the release of

the audio fragment (e.g. album)
• track; optional value to specify the name of the

audio fragment

After a successful request, a response will be returned in
JSON format. The JSON will hold a status code and a track
ID. The track ID should match the parameter you send,
unless you omitted it. The query command can be either a
HTTP POST or GET request. It only has one parameter,
which is fp_code. This code is, like the parameter from the
ingest command, generated by the codegen program.

When using GET, the URL would look similar to the
following example:

h t t p : / / 1 9 2 . 1 6 8 . 1 4 5 . 1 2 8 : 8 0 8 0 / q u e r y ? f p _ c o d e =
eJydz1uKgCEIBeAtaZbZcrzk

Upon a successful request, a JSON will be returned. This
JSON will contain more information in comparison to the
ingest command. The most interesting information is
whether the query was executed correctly, the search time,
if a match was found and if it did find a match, it will also
contain the track’s ID. The API can be easily extended so
that it will also return the track’s metadata.

7. FINAL THOUGHTS
Overall the Echoprint system seems reliable and accurate
compared to it’s competitors. It can be considered as a
milestone in the development of audio fingerprinting
technologies and the expectations of its developers to be the
de facto music identification technology, seems valid. Its
speed and accuracy provides a technology that can be
further developed and explored, as it is already been done
by major corporations in the field in discussion. The
Echoprint’s rich data API and developer toolkits power the
most engaging music applications in the industry.

Echoprint, from a development perspective, is very
interesting to work with, but also very time-consuming.
This is especially true when you don’t have some
experience with C-based programming languages, as some
components need to be compiled. It took five working days
to get everything set-up and running. Most of the
encountered problems were caused by memory leaks or bad
documentation. On the Echoprint forum these problems are
discussed and usually a possible solution is provided.

The interesting part is that Echoprint is open-source. This
means that the system is extendable. Mainly the API, as it is
easy to understand. To add more functionality it would
require a deep understanding of the workings of the system,
which is achievable by analysing the code.

REFERENCES
1. "3D Music Maze." 3D Music Maze. Web. 12 June

2015. <http://labs.echonest.com/3dServer/maze.html>.”
2. "7digital United Kingdom | High-quality Digital Music

Downloads." 7digital. Web. 2 June 2015. <https://www.
7digital.com>.

3. "Echoprint Codegen Instructions." GitHub. Echo Nest,

Page ! of !4 5

http://localhost:8080/ingest

9 Jan 2015. Web. 12 June 2015. <https://github.com/
echonest/echoprint-codegen>.

4. "Echoprint." Open Source Music Identification. Web.
20 Apr. 2015. <http://echoprint.me>.

5. "Echoprint Server Instructions." GitHub. Echo Nest, 10
May 2012. Web. 12 June 2015. <https://github.com/
echonest/echoprint-server>.

6. "Our Company." Company. Web. 12 June 2015. <http://
the.echonest.com/company/>.

7. "The Echo Nest Releases New Research Findings." The
Echo Nest Releases New Research Findings. Web. 12
June 2015. <http://the.echonest.com/pressreleases/echo-
nest-releases-new-research-findings/>.

8. "Three.jsr." Three.js. Web. 2 June 2015. <http://
threejs.org>.

9. "We Know Music..." The Echo Nest. Web. 12 June
2015. <http://the.echonest.com/>.

10. Bertin-Mahieux, Thierry, et al. "The million song
dataset." ISMIR 2011: Proceedings of the 12th
International Society for Music Information Retrieval
Conference, October 24-28, 2011, Miami, Florida.
University of Miami, 2011.

11. Ellis, Daniel PW, Brian Whitman, and Alastair Porter.
"Echoprint: An open music identification service."
ISMIR 2011 Miami: 12th International Society for
Music Information Retrieval Conference, October
24-28. International Society for Music Information
Retrieval, 2011.

12. Haitsma, Jaap, and Ton Kalker. "A Highly Robust
Audio Fingerprinting System." ISMIR. Vol. 2002.
2002.

13. Schindler, Alexander, and Andreas Rauber. "Capturing
the temporal domain in echonest features for improved
classification effectiveness." Adaptive Multimedia
Retrieval: Semantics, Context, and Adaptation.
Springer International Publishing, 2014. 214-227.

Page ! of !5 5

