Web Technology 2015

Lecture 2. The Internet: TCP/IP (part 1)

Staas de Jong

Universiteit Leiden > LIACS > Media Technology

Notes beforehand...

For people who have missed lecture 1 (train problems):
⇒ closely study its contents

- proposals for Web Technology Reports:
 - received 8
 - let's discuss them after this lecture...

In the news...

Jaap Haartsen

- 1994: invented Bluetooth at Ericsson
- 2015: induction at the Smithsonian into the National Inventors Hall of Fame

 see e.g. http://nos.nl/artikel/2028508-nederlandse-bluetoothuitvinder-komt-in-hall-of-fame.html Topical overview: main arcs

Topical overview: zooming in

• Next 4 sessions: from copper wires to client/server programming

Topical overview: zooming in

- Now *internetworking* we will discuss:
 - pairwise digital communication
 - networked digital communication
 - internetworked digital communication

- **Q:** ↑ Is there something we should discuss first ?
- A: Yes: *no* communication.

⇒ Necessary: Imagine your computer is an isolated island.

Personal anecdote 1: *magic* with symbols

Personal anecdote 1: *magic* with symbols

pairwise… → *networked…* → *internetworked digital communication*

In the example...

- Connecting the pair of computers enabled:
 - *communication:* via visual symbols
 - *sharing of resources:* the screen of the other computer

SWSTREET.

C RING PROTOTYPE (C) 1999-2000 STARS DE JONG

pairwise networked... -> internetworked digital communication

C RING PROTOTYPE (C) 1999-2000 STARS DE JONG

Personal anecdote 2: magic with symbols

at greater scales

Networks

- Connect multiple computers via a shared physical medium.
- Many possible physical media:
 - direct cabling (e.g. copper wires)
 - telephone line
 - wireless connection (radio)
 - •

 \Rightarrow The computers can now cause changes to eachother's state.

- This enables communication and sharing of resources
 - (e.g. messaging, mail, data storage, printing devices, games, videoconferencing, ...).

Networks: the problem of scalability

- Use of pairwise dedicated physical communication channels
 - only works well for a small number of machines
 - i.e., does not scale:

Think of what happens over n the number of machines; and over increasing geographical distance.

A solution: Packet switching

- Most networks use *packet switching*:
 - Data is split up and sent in discrete chunks (packets).
 - Each packet is individually routed to its destination.
 - Multiple data streams can be sent simultaneously by interleaving packet streams.

 $\uparrow \Rightarrow scalability!$

- Not all packets will necessarily
 - follow the same route
 - arrive after similar periods.
- Analogy: small postal cars
 - racing down shared highways
 - each carrying one box (packet) with data
 - possibly a small chunk of a larger data transfer.

LAN: Local Area Network

- Classical example.
- Covers a small local area, like a home, office, or group of buildings. →
- E.g. using *Ethernet*, but there are also other (W)LAN technologies, such as Token ring, *Wi-Fi*.
- So that they can send eachother messages, the computers on a LAN each have an identifying hardware address.

Connecting *networks*

pairwise... → *networked...* → *internetworked digital communication*

• Motivation:

communication & resource sharing is extended even further by connecting different networks!

- However, different network technologies are incompatible: different physical media; different addressing schemes; different packet sizes; different internal data formats; etc.
- One approach: ad hoc solutions, connecting different pairs.
- ⇒ Better solution: build a virtual network on top of physical ones.

↑ An *internetwork*.

Internetworks

Result in

(a) the appearance of a single network...

(b) ...despite the underlying structure.

An example internetwork: SURFnet7

 The SURFnet organization provides a very high quality internetwork between local networks of Dutch higher educational institutions.

• Latest incarnation: SURFnet7.

- The world's largest public internetwork.
- 'Computers' can be...
 - smartphones, tablets, laptops, desktop PCs, dedicated servers, mainframes, microwave ovens, soda machines, ...
 - running Linux, Windows, Mac OS X, Unix, etc...
 - connected by Wi-Fi, Ethernet, Token Ring, FDDI, ADSL, ATM, Frame Relay, etc...

- Started as a research project connecting 4 computers.
- Has shown exponential growth; see the Internet Domain Survey at www.isc.org/ds/.

Internet Domain Survey Host Count

• **Q:** What do you suppose happened post-2005?

Internet Domain Survey Host Count

• **Q:** What do you suppose happened post-2010?

Internet Domain Survey Host Count

Source: Internet Systems Consortium (www.isc.org)

 $\dots \Rightarrow$ Takeaway: (1) there was an exponential growth phase (2) notice the scales on the vertical axis.

Next: how to make an Internet

↑ Image: late 1990s Internet traffic flow visualization, by Stephen Eick.

But first...

