Web Technology 2015

Lecture 3. The Internet: TCP/IP (part 2)

Staas de Jong

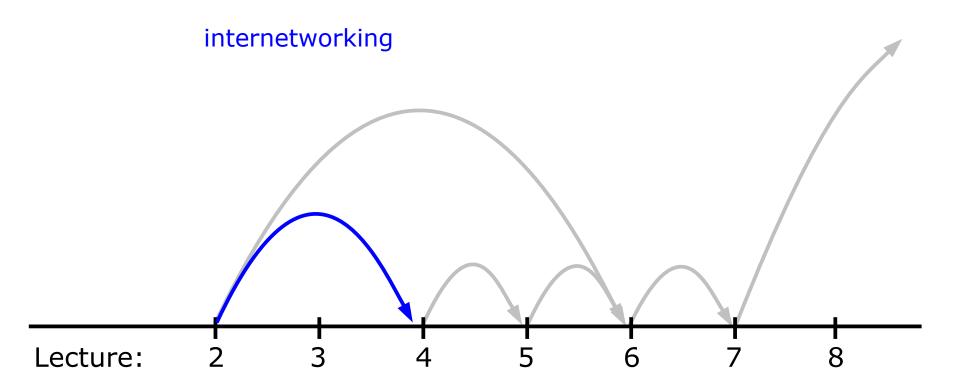
Universiteit Leiden > LIACS > Media Technology

Notes beforehand...

- Guest: welcome!
- The study material:
 - read it now
 - e.g. before or after each lecture
 - ask questions

⇒ less work, more clarity around exam time

Notes beforehand...


- Web Technology Reports:
 - This Thursday: *final* deadline for updated proposals.
 - This Friday: teams are assigned subjects!
- New suggestions:
 - Since last Monday, "mobile-friendliness" directly affects Google search ranking.

⇒ Paper subject: Standards for mobile-friendly web pages.

• Since last Monday, Android Wear supports *Wi-Fi on smartwatch hardware*.

⇒ Paper subject: Android Wear: Smartwatches as a web technology.

Today: closing the *internetworking* arc

 \Rightarrow diving into the TCP/IP stack: IP, TCP, UDP, DNS.

IP: functionality

- IP: the *Internet Protocol*
- Three main components of its functionality:
 - IP provides *addressing*:
 - gives each machine a unique ID;
 - maps these onto hardware addresses.
 - IP provides *routing*:
 - combines smaller networks to form one huge network;
 - lets data traverse networks one by one.
 - IP provides *fragmentation*:
 - where needed, divides packets into smaller parts when they are forwarded.

IP: characteristics

- IP is *connectionless:*
 - There is no notion of a connection starting and ending.
 - Data is sent in packets called *IP datagrams*.

- IP is *unreliable:*
 - Packets can get delayed, lost, duplicated, or corrupted.
 - Corrupted packets are simply discarded without further notice!

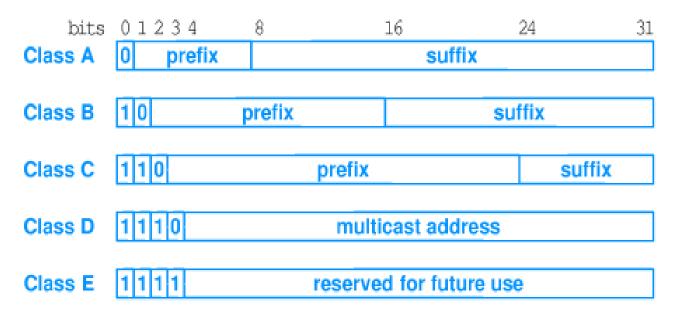
IP: addressing

- Classical IP address: 32-bit number, identifying a machine connected to the Internet.
 - E.g.: 10000010011010000001100000000.
 - ↑ Replacing binary notation by decimal notation: 2167670272.
- This number is divided into bytes, groups of 8 bits:
 - E.g.: 10000001 00110100 00000110 0000000.
 - or 129. 52. 6. 0 ...in dotted decimal notation.

There is structure: *different* bytes have *different* meanings...

IP addresses: structure and meaning

• Higher-order bytes are used to indicate a *network*.

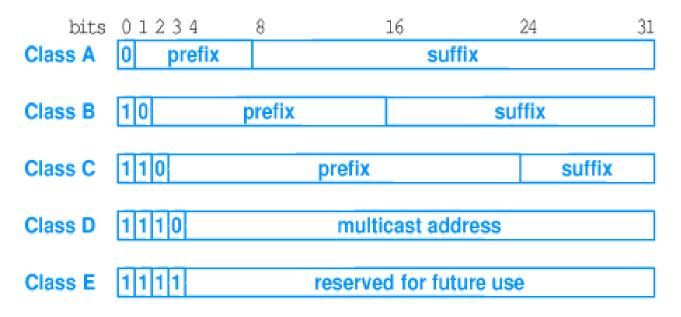

↑ The "prefix" part.

Lower-order bytes are then used to indicate a *host a specific machine* – on that network.

↑ The "suffix" part.

- When you encounter an IP address, its very first (highest-order) bits tell you:
 - which bytes form the prefix
 - which bytes form the suffix...

IP addresses: structure and meaning



The different prefix/suffix combinations ↑ are called IP address classes.

You can identify the	Class
<i>class</i> looking at the	Α
<i>first</i> byte in dotted	BC
decimal notation. \rightarrow	D

Class	Range of Values
Α	0 through 127
в	128 through 191
С	192 through 223
D	224 through 239
E	240 through 255

IP addresses: structure and meaning

- ↑ Because of IP address classes:
 - real-world networks of very different sizes
 - could all be combined into a single internet
 - in a time when memory was very expensive! ↓

Address Class	Bits In Prefix	Maximum Number of Networks	Bits In Suffix	Maximum Number Of Hosts Per Network
Α	7	128	24	16777216
В	14	16384	16	65536
С	21	2097152	8	256

IP addresses: concrete, special examples

- 127.0.0.1 : localhost.
 - ↑ Your own machine even when not connected to the rest of the Internet.
 - Useful for prototypes & offline testing.

• 192.168.0.x : reserved for private networks.

IP - scalability issue: *classes waste address space*

• **Problem:** The size limits of classes A-C led to large wastes of address space.

Address Class	Bits In Prefix	Maximum Number of Networks	Bits In Suffix	Maximum Number Of Hosts Per Network
Α	7	128	24	16777216
В	14	16384	16	65536
С	21	2097152	8	256

Example:

- Imagine a company with 300 host machines.
- They would need a class B address.
- \Rightarrow And so waste 65536 300 = 65236 addresses!
- **Solution:** various techniques to save IP addresses.

⇒ Takeaway: today, classes are not used as originally intended.

IP - scalability issue: address space itself too small

• **Problem:** A classical, IP version 4 (IPv4) address is a 32-bit number.

⇒ This gives us 4,294,967,296 unique addresses …only!

Example: think of the world population.

• **Solution:** IP version 6 (IPv6) uses 128-bit addresses.

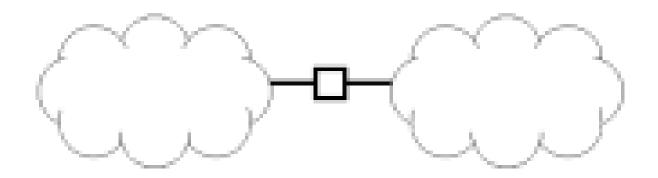
⇒ This gives us ±50.000.000.000.000.000.000.000.000.000 unique addresses
…for each of the ±6.5 billion people alive today.

NAT: an intermediate fix giving real-world surprises

• Network Address Translation (NAT):

- On the local network: Each machine has its own IP address, within a specific range.
- To the rest of the Internet: The local IP range is represented by a **single**, quite different IP address!
- \Rightarrow (+) This saves address space.
- \Rightarrow (-) In a project, your IP might not be what you think it is!

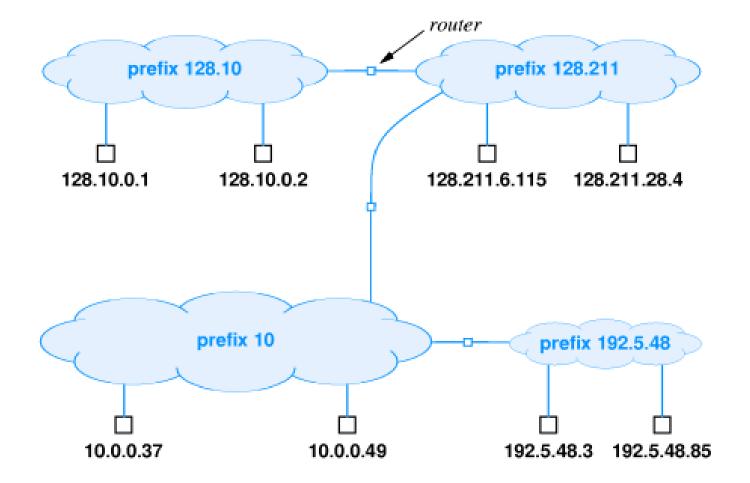
• **Example:** home WLAN with router to Internet Service Provider.

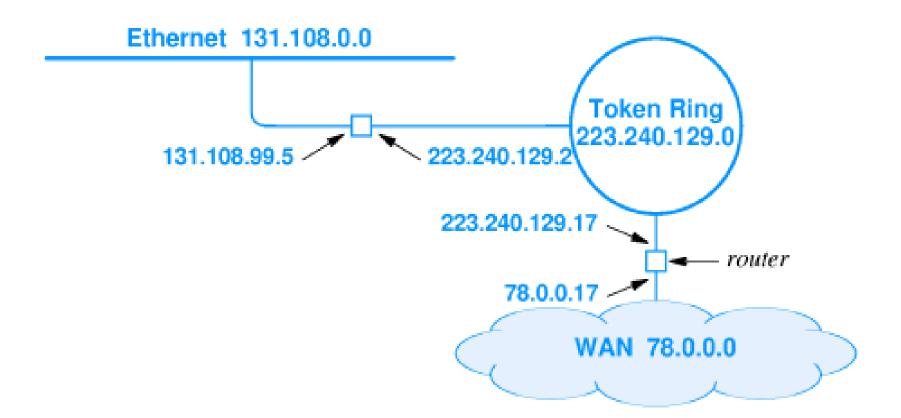

My laptop OS says ↓

IPv4	
IP Address:	192.168.0.112
Broadcast Address:	192.168.0.255
Subnet Mask:	255.255.255.0

www.whatsmyip.org says \$

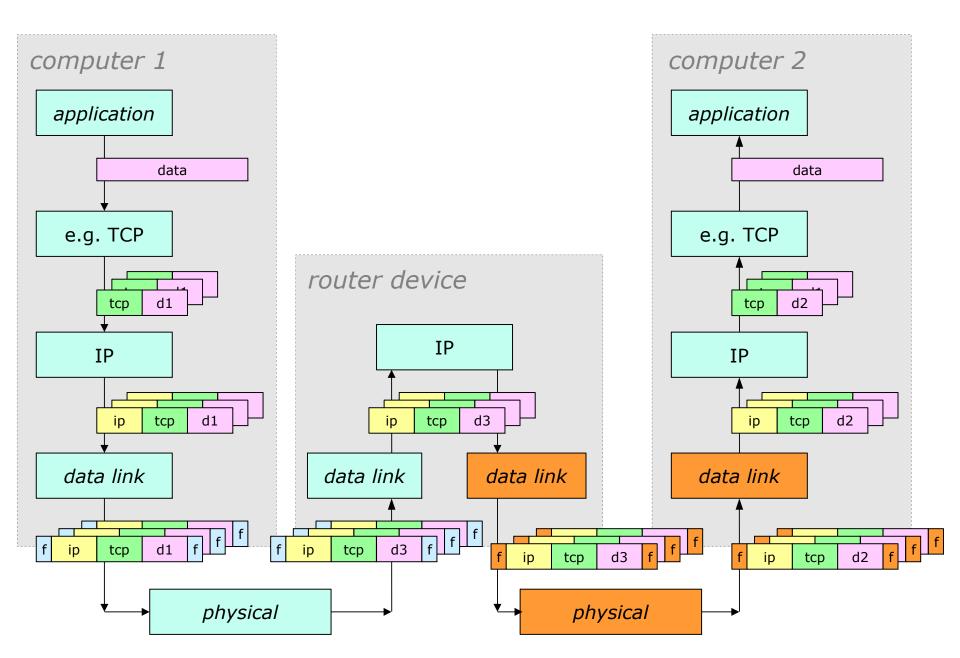
Your IP Address is 109.163.234.2


IP: Internetwork routing

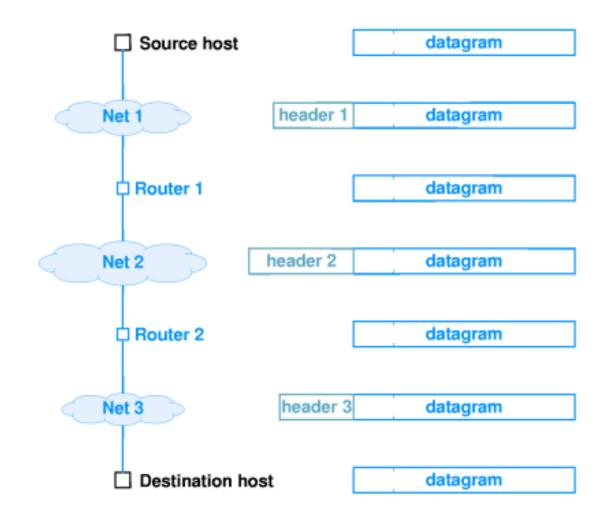

- A router device connects two or more physical networks.
- A router is part of each physical network that it connects.
- Data packets move from one network to the next network through a router.
 - ⇒ Routers are responsible for forwarding IP traffic to the right destination.

... are the devices that enable the Internet.

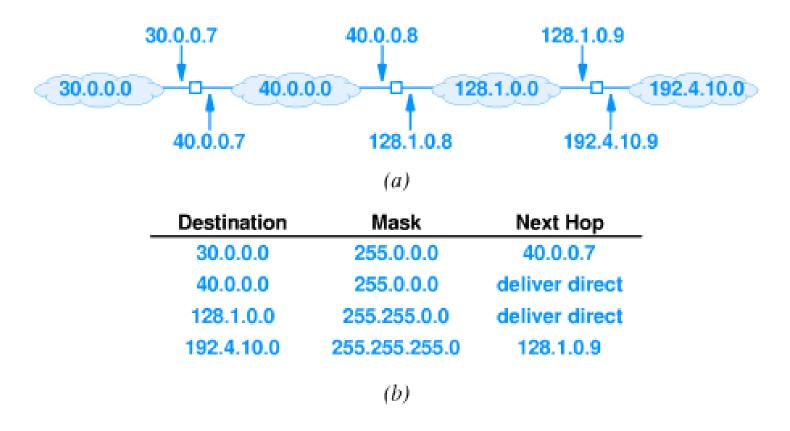
IP routing: an example topology



IP routing: two example routers, in more detail



↑ The routers themselves have an IP address, in each network they connect to.


Routers and the Internet protocol stack

Hop-by-hop routing

Hop-by-hop routing: via routing tables

↑ Table (b) shows the routing table for the middle router in diagram (a).

- Destination host is on router's networks? \Rightarrow Deliver the packet directly.
- Not? \Rightarrow Deliver the packet to a router closer to the destination host..

