TCP: Transmission Control Protocol

e TCP, a Transport Layer protocol, provides reliability:
e Takes care of resending lost, damaged, delayed packets.
e Sorts packets into the original order they were sent in.

e TCP also provides virtual connections:
e The underlying IP (Network) Layer is connectionless,
but is used to realize continuous connections.

e These connections give other internet technologies
the means to exchange finite, ordered bit streams.

e TCP supports having many such applications,
by providing each with a port number, e.q.:

21 = FTP server (file transfer)
25 = SMTP server (e-mail)
etc. (range: 0-65535).

TCP uses the abstraction provided by IP

* TCP uses IP’s services to abstract from underlying networks:
* It sees just a single internetwork.

* It knows nor cares about the underlying network

infrastructure:
CORURNRICalion svsiem
Host A as viewed by TCP Host B
appl. appl.
TCP | \ TCP
7 router e
net iface. IP net iface.

| net iface. \
net 1 SIS B W net 2

TCP: implementing reliability

* TCP uses acknowledgments to track the delivery of packets.

When a packet has not been acknowledged in due time,
TCP resends. Simplified:

Events at Host 1

send message 1 ——._

receive ack 1 —
send message 2

recalve ack 2 —

send message 3 ——

reatransmission timer axpires —

L

-

A

packel lost

retransmit message 3 —

Events at Host 2

receive Imessdilge |

- send ack 1

— FBCEIVE MESSaqe 2
L send ack 2

« In TCP, packets
are called segments.

Tl FRBCRIVE TS sage 3

L send ack 3

Q: Why would this

Y term make sense?

TCP: implementing virtual connections

e On a source host, TCP:

- Initiates a connection.

- Then splits data (from the Application Layer) into smaller
packets (a.k.a. datagrams or segments).

- Then adds its own header to each segment.

- Then passes the segments to the Internet Layer (IP).

- Retransmits segments if receipt not acknowledged in time.
- Ends the connection when done.

e On a target host, TCP:

- Sends an acknowledgment for each received segment.
- Assembles received segments in the correct order.

- Rebuilds the bit stream from the segments.

- Passes it to the appropriate application on the correct port.

TCP: introduces the client/server model

* Server: an IP address + TCP port providing a service.

* Client: an IP address + TCP port using a service.

* Examples:

* A mail client (e.qg. Outlook)
retrieving e-mail from a mail server (e.g. Exchange).

* An FTP client sending files to an FTP server.
* A telnet client connecting to a telnet server.
* Etc.!

* Servers are often passive: wait for requests from clients
to come in.

TCP: introduces the client/server model

A machine can run multiple servers (applications, programs)
with each performing I/0O via a different TCP port.

* Each server may use a different Application Layer protocol
(e.g. telnet, FTP, SMTP).

* Multiple clients may be contacting multiple servers on one
machine:

— ~N T
@E‘I‘I‘l' erven [serve |é|IE'I'I1':
L/ 1 \2 \2/
transport transport transport

internet internet interneat
net. iface. net. iface. net. iface.

—

internet —_—

UDP: User Datagram Protocol

Application layer
Transport layer
Network layer
Data link layer
Physical layer

Q: Where do you think UDP is located? 1

A: Like TCP, UDP is a Transport Layer protocol.

UDP: comparison with TCP

* Similarities with TCP:

* Also runs on top of IP (naturally).

* Also is a very widely used Internet protocol.

* Also provides port numbers to applications.

UDP: comparison with TCP

* Differences with TCP:

* Is connectionless: does not provide virtual connections.

* Is unreliable:
* packets may get lost or seriously delayed;

* packets are not sorted into their original order.

* ...But, is generally faster than TCP.

UDP: why is it faster?

* Providing reliable connections (e.g. TCP) has a cost.

* Cost is in terms of time/computations:
* Handshake exchanges to set up and terminate a connection.
* Acknowledging, waiting for, and re-transmitting segments.

* Processing of the complex TCP headers.

UDP: why is it faster?

* Consider TCP headers:

TCP Header
Offsets Octet 0 1 2 3

Octet | Bit of 1 2 3 4| 5| & 7| 8 9/10(11 12 |13(14 15(16 17 18|19 20|21 22 23|24 25|26 27 28|29 30|31

0 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ncx set)
12 96 | Data offset | Reserved I : ; R |c E s|v|1 Window Size
000 R|IE([G|KE|H|T N(H
16 128 Checksum Urgent pointer (if Urc set)
20 160 Options (if Data Offset = 5 padded at end with "0" bytes if necessary)

T Significant computational processing required
during communication.

UDP: why is it faster?

* Consider UDP datagrams:

offset (bits) 0-15 16 — 31
0 Source Port Number Destination Port Number
32 Length Checksum
64+ Data

The UDP header consists of 4 fields, each of which is 2 bytes (16 bits).“] The use of two of those is optional in IPv4 (pink
background in table). In IPvE only the source port is optional (see below).

T Simple format, very little overhead.

= Is cheap in terms of computational processing
required during communication.

UDP: when is it used?

e Mailservers, file transfers, etc.: need to be reliable!

= Q: So who uses UDP? Why use an unreliable protocol,
when there is TCP?

= A: Applications that:
- Need to be fast.
- Have single packet communications (no ordering required).
- Can handle lost packets well.

e Some examples:
- voice over IP (VoIP)
- real-time multiplayer games
- streaming media (e.g. music, video)
- Open Sound Control (OSC).

DNS: Name resolution

* Problem: The — many - IP addresses...
...are (still) not easy to remember - for us humans.
...give you no clue about what is provided via them.

* Solution: Name resolution:
* Host owner: picks a name that is informative & easy to remember.
* ...and submits it to a “central list” of (name, IP address) pairs.
* Other hosts can now use the name & look up the address in the list.

T Early version: a single name server implements (access to) the list.
(+) Hosts/users remember just one IP address: of the name server.
(-) Does not scale!

- Lookup time: processing a list with millions of entries.
- Traffic load: processing millions of requests per second.
- Redundancy: What if the server crashes?

DNS: Name resolution

* Current solution: DNS, which is:
* An Application Layer protocol for name resolution.

* A distributed name server architecture. There are:

...ordinary name servers:
- provide direct name resolution
- but are only responsible for a part of the list.

...and root name servers:
- do not provide direct name resolution
- instead maintain a list of name servers
- response to requests: IP address of name server that knows.

(+) Hosts/users remember just the IP addresses of root servers.
(+) Does scale!
- Lookup time: the server types now each maintain shorter lists 1
- Traffic load: request/reply traffic now is distributed across servers.
- Redundancy: multiple root servers and full list not at one place.

DNS: Name resolution

* (!) However - key point to actually make this work:

* A root name server has to work out which other server to
refer you to

= We need to somehow distribute the host names across the name
servers in a way that is

* Luckily, we can look at everyday life:

* Consider first and family names, e.g. Alice Combs, Bob Combs.

* “Let's put all the Combses in a single name server.”

* For Internet hosts, the notation becomes alice.com, bob.com.

= Problem solved!

* “.com” is a "domain” = and DNS is the Domain Name System.

* Domains expand hierarchically: e.g. advice.bob.com, gossip.bob.com

DNS: a few concrete examples

e Suppose you want to start using the IP address associated
with walnut.candy.foobar.com.

e Your local DNS server does
not hold the requested
domain name, and so the
request is forwarded to a
DNS root server.

| | --—— roet server

server for

server for SToolar. com

candy. foolxar, com

e It then returns which DNS
name server to contact next
for the requested domain
name...

...and this repeats. -

r LY .-'-. x"'. o LY
| peanut | [almond | | walnut |

e To also study & understand: the everyday DNS request/reply
scenario discussed in the required reading material.

What's next?

e We now know why Internet host names have this.dotted.structure:

- Because of DNS.
- Had to strike a balance in human/machine “readability”.

= We are now at the end of the internetworking arc. We can:

- digitally connect to any machine on a worldwide internet
(...thanks to IP),

- using just its name
(...thanks to DNS),

- and reliably send arbitrary bit streams to and from it
(...thanks to TCP).

Next: in the early 1990s,
the above technologies
were used by someone
to come up with a project.

