
TCP: Transmission Control Protocol

 • TCP, a Transport Layer protocol, provides reliability:
 • Takes care of resending lost, damaged, delayed packets.
 • Sorts packets into the original order they were sent in.

 • TCP also provides virtual connections:
 • The underlying IP (Network) Layer is connectionless,

 but is used to realize continuous connections.
 • These connections give other internet technologies

 the means to exchange finite, ordered bit streams.

 • TCP supports having many such applications,
 by providing each with a port number, e.g.:

 21 = FTP server (file transfer)
 25 = SMTP server (e-mail)
 etc. (range: 0-65535).

TCP uses the abstraction provided by IP

• TCP uses IP’s services to abstract from underlying networks:

• It sees just a single internetwork.

• It knows nor cares about the underlying network
infrastructure:

TCP: implementing reliability

• TCP uses acknowledgments to track the delivery of packets.

When a packet has not been acknowledged in due time,
TCP resends. Simplified:

 ← In TCP, packets
are called segments.

Q: Why would this
term make sense?

TCP: implementing virtual connections

• On a source host, TCP:

 · Initiates a connection.
 · Then splits data (from the Application Layer) into smaller

 packets (a.k.a. datagrams or segments).
 · Then adds its own header to each segment.
 · Then passes the segments to the Internet Layer (IP).
 · Retransmits segments if receipt not acknowledged in time.
 · Ends the connection when done.

• On a target host, TCP:

 · Sends an acknowledgment for each received segment.
 · Assembles received segments in the correct order.
 · Rebuilds the bit stream from the segments.
 · Passes it to the appropriate application on the correct port.

TCP: introduces the client/server model

• Server: an IP address + TCP port providing a service.

• Client: an IP address + TCP port using a service.

• Examples:
• A mail client (e.g. Outlook)

retrieving e-mail from a mail server (e.g. Exchange).
• An FTP client sending files to an FTP server.
• A telnet client connecting to a telnet server.
• Etc.!

• Servers are often passive: wait for requests from clients
 to come in.

TCP: introduces the client/server model

• A machine can run multiple servers (applications, programs)
with each performing I/O via a different TCP port.

• Each server may use a different Application Layer protocol
(e.g. telnet, FTP, SMTP).

• Multiple clients may be contacting multiple servers on one
machine:

UDP: User Datagram Protocol

Application layer

Transport layer

Network layer

Data link layer

Physical layer

Q: Where do you think UDP is located? ↑

A: Like TCP, UDP is a Transport Layer protocol.

UDP: comparison with TCP

• Similarities with TCP:

• Also runs on top of IP (naturally).

• Also is a very widely used Internet protocol.

• Also provides port numbers to applications.

UDP: comparison with TCP

• Differences with TCP:

• Is connectionless: does not provide virtual connections.

• Is unreliable:

• packets may get lost or seriously delayed;

• packets are not sorted into their original order.

• ...But, is generally faster than TCP.

UDP: why is it faster?

• Providing reliable connections (e.g. TCP) has a cost.

• Cost is in terms of time/computations:

• Handshake exchanges to set up and terminate a connection.

• Acknowledging, waiting for, and re-transmitting segments.

• Processing of the complex TCP headers.

UDP: why is it faster?

• Consider TCP headers:

 ↑ Significant computational processing required
 during communication.

UDP: why is it faster?

• Consider UDP datagrams:

 ↑ Simple format, very little overhead.

 ⇒ Is cheap in terms of computational processing
 required during communication.

UDP: when is it used?

• Mailservers, file transfers, etc.: need to be reliable!

 ⇒ Q: So who uses UDP? Why use an unreliable protocol,
 when there is TCP?

 ⇒ A: Applications that:
· Need to be fast.
· Have single packet communications (no ordering required).
· Can handle lost packets well.

• Some examples:
· voice over IP (VoIP)
· real-time multiplayer games
· streaming media (e.g. music, video)
· Open Sound Control (OSC).

DNS: Name resolution

• Problem: The – many – IP addresses...
...are (still) not easy to remember – for us humans.
...give you no clue about what is provided via them.

• Solution: Name resolution:
• Host owner: picks a name that is informative & easy to remember.
• ...and submits it to a “central list” of (name, IP address) pairs.
• Other hosts can now use the name & look up the address in the list.

 ↑ Early version: a single name server implements (access to) the list.
(+) Hosts/users remember just one IP address: of the name server.
(–) Does not scale!

· Lookup time: processing a list with millions of entries.
· Traffic load: processing millions of requests per second.
· Redundancy: What if the server crashes?

DNS: Name resolution

• Current solution: DNS, which is:

• An Application Layer protocol for name resolution.

• A distributed name server architecture. There are:

...ordinary name servers:
· provide direct name resolution
· but are only responsible for a part of the list.

...and root name servers:
· do not provide direct name resolution
· instead maintain a list of name servers
· response to requests: IP address of name server that knows.

(+) Hosts/users remember just the IP addresses of root servers.
(+) Does scale!

· Lookup time: the server types now each maintain shorter lists ↑
· Traffic load: request/reply traffic now is distributed across servers.
· Redundancy: multiple root servers and full list not at one place.

DNS: Name resolution

• (!) However – key point to actually make this work:

• A root name server has to work out which other server to
refer you to simply by looking at the name you requested.

 ⇒ We need to somehow distribute the host names across the name
servers in a way that is stored inside the names themselves...

• Luckily, we can look at everyday life:

• Consider first and family names, e.g. Alice Combs, Bob Combs.
• “Let's put all the Combses in a single name server.”
• For Internet hosts, the notation becomes alice.com, bob.com.

 ⇒ Problem solved!
• “.com” is a “domain” and ⇒ DNS is the Domain Name System.
• Domains expand hierarchically: e.g. advice.bob.com, gossip.bob.com

DNS: a few concrete examples

• Your local DNS server does
not hold the requested
domain name, and so the
request is forwarded to a
DNS root server.

• It then returns which DNS
name server to contact next
for the requested domain
name...

 ...and this repeats. →

• Suppose you want to start using the IP address associated
with walnut.candy.foobar.com.

• To also study & understand: the everyday DNS request/reply
scenario discussed in the required reading material.

What's next?

• We now know why Internet host names have this.dotted.structure:

· Because of DNS.

· Had to strike a balance in human/machine “readability”.

⇒ We are now at the end of the internetworking arc. We can:

· digitally connect to any machine on a worldwide internet
 (...thanks to IP),

· using just its name
 (...thanks to DNS),

· and reliably send arbitrary bit streams to and from it
 (...thanks to TCP).

Next: in the early 1990s,
the above technologies
were used by someone
to come up with a project.

