

Notes beforehand...

Notes beforehand...

 ↑ For more details: See the (online) presentation program.

Topical overview: main arcs

Lecture: 2 3 4 5 6 7 8

advanced
subject

WTRsfundamental
subjects

Today: the WWW arc

Lecture: 2 3 4 5 6 7 8

internetworking WWW

• Sessions 2-5: from copper wires
 to client/server programming

The context

• Old dream: to store and make accessible
 all of human knowledge.

An innovative idea

• “A global storage system where accessing
 one document also gives immediate access
 to all the other documents that it refers to.”





 ↑ Compare against: printed text, containing textual references,
 stored in libraries.



• Hyperlink: immediate link from one document to another.


• Hypertext: text that contains hyperlinks.


• Extension: documents may contain hypermedia
 – not just written text...

Implementing hypertext, a “shopping list”:

• a format for storing hypertext documents


 including a uniform notation for hyperlinks


• devices that then store & instantly serve hypertext documents


• devices that can instantly retrieve & display hypertext documents


 ⇒ a communication protocol for transferring hypertext documents


• an open-ended mechanism extending hypertext with hypermedia


Implementing hypertext?

• For most of human history: at most, a far-away dream.




• Since quite recently: implementation has become technologically
 possible.



 • Consider the gains discussed in the previous 2 lectures:
 · IP · DNS · TCP · client/server technology



 ⇒ ...we can do this!


Implementing hypertext

• a format for storing hypertext documents


 including a uniform notation for hyperlinks


• devices that then store & instantly serve hypertext documents


• devices that can instantly retrieve & display hypertext documents


 ⇒ a communication protocol for transferring hypertext documents


• an open-ended mechanism extending hypertext with hypermedia


 ⇒ HTML: HyperText Markup Language

 ⇒ URL: Uniform Resource Locator

 ⇒ web servers

 ⇒ web clients = browsers

 ⇒ HTTP: HyperText Transfer Protocol

 ⇒ MIME types

Hyperlinks: URLs

• URLs are used as the identifier or address of some resource.

• “Resource”: e.g. a webpage, an image, a sound file, …

• A URL consists of a ‘scheme’ or ‘protocol’ to use (usually HTTP);
a hostname; and a pathname.

• · e.g. http://www.liacs.nl/index.html

• Sometimes the TCP port number is also included.
•

• · e.g. as in http://www.liacs.nl:80/index.html

• URLs can be relative to the document they are mentioned in.

• · e.g., a mention of /edu/index.html may be short for
• http://www.liacs.nl:80/edu/index.html

URLs: examples of different protocols

• web-resource http://mediatechnology.liacs.nl

• remote login (telnet) telnet:krypton.wi.leidenuniv.nl

• file transfer (ftp) ftp://ftp.cs.uu.nl/pub/

• Usenet newsgroups news:comp.lang.javascript

• e-mail mailto:someone@liacs.nl

• local file file:c:\temp\mypage.html

Hypertext: HTML

● “Mark-up” in general: a notation used to specify how text
should be displayed.

● Intended purpose of HTML markup:
●

● · specifying the structure of a hypertext document

● · not its presentation.
●

● HTML is strictly defined by the WWW Consortium (W3C):
see http://www.w3.org.

HTML: hypertext markup

● Markup includes tags, attributes, and entity references.

● Tags are written <x> and </x>, where x is the tag name.

● Tags specify a specific markup, e.g. <p> for paragraphs,
<h1> for headings, <a> for “anchors” = hyperlinks.

● Attributes specify additional parameters to tags, e.g. href
inside an <a> tag, for the specific target URL of the hyperlink.

● Entity references encode special characters, and are written
between ‘&’ and ‘;’ characters, e.g. > for character ‘>‘ .

● Combined example: >>

HTML: structured, navigable hypertext

A complete example – HTML in a plaintext editor:


 <html>

 <head>

 <title> Hello world! </title>

 </head>

 <body>

 <h1> Hello world! </h1>

 <p>

 Will you stay, or will you go

 >> ?

 </p>

 </body>

 </html>

HTML: structured, navigable hypertext

A complete example – displayed by a browser:


Navigation: enabled by HTTP transactions

● The user typed the URL of the example webpage (say,
http://www.first.com) into the browser.

● The browser then sent a request to the appropriate server.

● The server responded with an HTML page.

● The user may click the hyperlink on the page, triggering
a new request-response cycle, involving another machine:

www.first.com

www.next.com

client

1

2

3

4

HTTP transactions

• HTTP: application layer protocol.

 ↑ HTTP runs on top of TCP (which runs on top of IP).

• · HTTP servers: by default on TCP port 80.

• For transfer of HTML documents between web servers and
web clients (browsers).

• Also used for transfer of other document/data types.

HTTP transactions

Classical HTTP scenario:

• client browser connects to server, using TCP;

• client sends request to server, using HTTP;

• server replies with a response, using HTTP;

• server disconnects the TCP connection.

HTTP/0.9 transactions

• HTTP/0.9: first official version (Berners-Lee 1991).

• Very basic:
• · client only has GET “request method” – nothing else
• · server simply responds with HTML content – nothing else.

• An example client request:
GET /~user/WebTech/

• An example server response:
<h1>Web Technology</h1>

<h2>Introduction</h2>

Slides

Tutorial

 …

HTTP/1.0 transactions: more request methods

● GET: retrieve a document.

● HEAD: retrieve information about the document,
 but not the document itself.

● POST: provide information to the server.

● PUT: provide a new or replacement document
 to be stored on the server.

● DELETE: remove a document from the server.

● TRACE: ask that proxies declare themselves (in the headers,
 see below), so client can learn path taken by document.

● OPTIONS: what other methods can be used?

HTTP/1.0 transactions: requests/responses

 An HTTP/1.0 request contains:
 · a request method (usually GET – retrieve a document);
 · a URL, identifying the document to be retrieved;
 · an HTTP version number: HTTP/1.0;
 · additional information in header lines;
 · an empty line;
 · optionally, a request body (when request method is POST).

 An HTTP/1.0 response then contains:
 · an HTTP version number: HTTP/1.0;
 · a status code (e.g. “200”) indicating success or failure,

 and a textual annotation (e.g. “OK”);
 · additional information in header lines;
 · an empty line;
 · a response body: the data to be retrieved.

HTTP/1.0 transactions: status codes

• ...are organized in ranges.

• Codes: Meaning of the response:
100-199 informational (e.g. Continue, Switching protocols);
200-299 client request successful;
300-399 client request redirected, further action necessary;
400-499 client request incomplete;
500-599 server errors.

• Most well-known are “200 OK” and “404 Not found”.

HTTP/1.1 transactions

• HTTP/1.1: currently the commonly used version.

• Works much the same as HTTP/1.0.

 ⇒ Most important difference:

• HTTP/1.0:
• For each request-response transaction, there is a

separate TCP connection to (the same) web server.

• HTTP/1.1:
• TCP connection is reused multiple times, e.g. to

download images for a just-delivered page
(persistent connections).

HTTP/1.1 transaction: a document

client server

HTTP/1.1 200 OK
Date: Tue, 17 Dec 2014 15:26:24 GMT
Server: Apache/1.3.26 (Unix)
Last-Modified: Thu, 05 Dec 2014 09:41:34
GMT
Content-Length: 10182
Connection: close
Content-Type: text/html

<html>
…

GET / HTTP/1.1
Accept: image/gif, image/jpeg, */*
Accept-Language: nl
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; …)
Host: www.server.com:80
Connection: Keep-Alive

time

HTTP/1.1 transaction: a document with an image

client server

time

GET / HTTP/1.1
...

HTTP/1.1 200 OK
...

GET /images/logo.gif HTTP/1.1
...

HTTP/1.1 200 OK
Content-Length: 14668
Connection: close
Content-Type: image/gif
…
[binary data]

BREAK!

